Table XIV.-continued.

Star.	1905.				1908.				1910.			
	E.		W.		E.		W.		E.		w.	
	$\Delta \delta$	Wt.										
ζ Octantis	$-0^{\prime \prime} 35$	3.4	-0.86	2.4	-0. $0^{\prime \prime} 29$	2.7	-0.67	$2 \cdot 2$	+0. ${ }^{\prime \prime} 5$	0.7		
γ Chamæleontis.					-0.23	$1 \cdot 9$	+0.45	0.7			-1.12	7
Lacaille $4510 .$.	+0.19	3.9	+0.68	$2 \cdot 8$	+0.04	113	-0.72	$2 \cdot 2$...			
η Octantis.	+0.23	$2 \cdot 7$	+0.32	2.9	+0.45	1.9			\cdots			
β Chamæleontis	+1.11	0.7			-0.06	2.0	-0.48	0.8	\ldots			
¢ Octantis..............	+0.54	$3 \cdot 3$	-0.40	$3 \cdot 8$	+0.45	2.2	-0.60	$2 \cdot 4$				
${ }_{\kappa}$ Octantis.............	+0.34	$3 \cdot 7$	-0.55	$2 \cdot 1$					+0.78	0.5		
θ Apodis.					-0.53	0.8	-1.07	17				
a Apodis			...				-115	$1 \cdot 2$	+0.19	0.8	+0.71	
ζ Apodis	+0.85	2.0	-0.44	0.8			-0.20	15	...			
Lacaille 6077.........					+0.85	$1 \cdot 3$	-1.06	$1 \cdot 3$...			
ρ Octantis	+0.56	1.2	\ldots		-0.08	0.8	-0.77	2.9	+142	1.5		
δ^{1} Apodis					+0.47	$1 \cdot 3$	+0.07	20				
γ Apodis					+0.74	2.0	$-1 \cdot 38$	$0 \cdot 8$				
Lacaille 6545	-0.18	1.5	+0.54	1.5	+0.22	2.5	-0.42	1.6	-0.66	$1 \cdot 0$	+0.39	2
β Apodis...............					+0.55	2.0	-0.70	1.7	...			
x Octantis..............					+0.44	$2 \cdot 3$	-0.26	15	...			
Lacaille 8094..........			-0.09	$0 \cdot 9$	-0.54	2.7	-0.89	1.2	...			
Lacaille 8257.........	+0.17	2.0	...		+0.47	2.9	+0.61	$2 \cdot 5$	+0.41	0.7		
μ^{1} Octantis,..........					+0.11	1.6	-0.65	1.6				
a Octantis					-0.02	2.2	-0.24	$2 \cdot 2$...			
\checkmark Octantis					-0.78	$1 \cdot 3$	-0.09	19	...			
$v(C)$ Octanti	-0.12	3.9	$+0.14$	$3 \cdot 0$			-0.43	$3 \cdot 5$				
τ Octantis..	+0.13	3.2	+0.04	2.7	-0.27	2.2	-0.59	$1 \cdot 2$	+1.68	0.7		
Lacaille 949	+0.22	0.7		$1 \cdot 3$	-0.25	$2 \cdot 2$	-0.74	1.2	+0.12			
θ Octantis.	-0.54	2.0	+0.16	$2 \cdot 0$	$+0.02$	0.5			+0.12		-0.5	$1{ }^{\circ}$

whence we derive in the mean

$$
\Delta \delta \text { (above - below) }
$$

	Clamp E.	Weight.	Clamp W.	Weight.
1905	+0:17	45	-0"15	40
1908	$+0.04$	65	-0.49	62
1910	$+0.47$	10	-0.27	8

The differences $\mathrm{E}-\mathrm{W}$ give in the mean the value

$$
+0^{\prime \prime} \cdot 47
$$

which corresponds very closely with the value of $2 B_{\text {II }}$ at the pole, as previously determined.

Applying the corrections $-2\left(A \mp B_{\mathrm{II}}\right)$ respectively to results from Clamp E and Clamp W, we obtain the following values :-
$\Delta \delta$ (above-below).
Clamp E. Clamp W.

1905	\cdot	\cdot	+0.07
1908	\cdot	\cdot	+0.23
1910	\cdot	\cdot	-0.06

and the corresponding corrections to the declinations on account of the combined effects of latitude and flexure :-

			Clamp E.	Clamp W.
1905	\cdot	\cdot	-	-0.04
1908	\cdot	\cdot	-	+0.03
1910	\cdot	\cdot	-0.12	
10.18	+0.06			
			-0.06	

The parts of these quantities due to flexure alone are respectively

1905	\cdot	\cdot	-0.27
1908	\cdot	\cdot	-0.14
1910	\cdot	\cdot	-0.05

whence the derived values for the latitude correction referred to the mean system are

		Clamp E.	Clamp W.	
1905	\cdot	\cdot	+0.123	+0.15
1908	\cdot	\cdot	+0.17	+0.20
1910	\cdot	\cdot	-0.13	-0.01

Collecting the various determinations, we find as the latitude correction referred to the homogeneous system, $\left[\frac{1}{2}(\mathrm{I}+\mathrm{II}): \frac{1}{2}(\mathrm{E}+\mathrm{W})\right]$.

Period of Observations.	Position.	Clamp.	$\Delta \phi$.	Weight.
1906-10	I.	E	+ "̈.12	217
"	I.	W	+0.08	192
1905	II.	E	$+0.23$	45
"	II.	W	+0.15	40
1908	II.	E	$+0.17$	65
"	II.	W	$+0.20$	62
1910	II.	E	-0.13	10
	II.	W	-0.01	8
I9II	I.	E and W	$+0.17$	309

The weighted mean of these results gives as the definitive latitude correction applicable to the mean system of the Ledgers

$$
\Delta \phi=+0^{\prime \prime} \cdot 14 \pm 0^{\prime \prime} \cdot 012
$$

C. F. C., 1900.

ASTRONOMY DEPT.

FUNDAMENTAL CATALOGUE

${ }^{68}$
 1293 STARS

FOR THE EQUINOX

1900

FROM OBSERVATIONS MADE AT THE

ROYAL OBSERVATORY, CAPE OF GOOD HOPE,
 dubing the years

1905-1911:

UNDER THE DIRECTION of
Sir DAVID GILL, K.C.B., LL.D., D.Sc., F.R.S., Hon. F.R.S.Ed., dc., FORMERLY HIS MAJESTY'S ASTRONOMER,
AND
S. S. HOUGH, M.A., F.R.S., his majesty's astronomer at the cape. Eape int Good Hope: Roysz observatory
Published by Order of the Lords Commissioners of the Admiralty, in obedience to His Majesty's Command.

EDINGURGH:
PRINTED UNDER THE AUTHORITY OF HIS MAJESTY'S STATIONERY OFFICE By Neill \& CO., Limited, Bellevue.

To be purchased, either directly or through any Bookseller, from
WYilan and SONS, Limited, 29 Breams Buildings, Fetter Lane, London, E.C., and
54 St Mary Street, Cardife; or
11. I. Stationery OFFICE (Scottish Branch), 23 Forth Street, Edinburgi; or
E. PONSONBY, Limited, 116 Grafton Street, Dublin ;
or from the Agencies in the British Colonies and Dependencies,
the United States of Anverica and other Foreign Countries of
T. FISHER UNWIN, Limited, London, W.C.
1915.
[Croun Copyright Reserved.]
Price Five Shillings.

Gift of astr. Sre. of Pacific

ASTRONOMY DRPM.

CONTENTS.

PAGE
I. Revision of Clock Star System-
System used for the Ledgers 1905-Il v
Comparison of I. E., I. W., Il. E., II. W. ix
Comparison with Newcomb's Catalogue x
Daylight Observations of Clock Stars x 1
Comparison of Day and Night Observations x11
II. Revision of Declination System-
Comparison of Observations Clamp E. and W xxvi
Comparison of Observations Positions I. aud II. xxvii
Flexure Observations xxviii
Reduction to uniform system xxviii
Latitude and flexure currections xxix
Systematic corrections to the Declinations xxxiv
III. Formation of Definitive Catalogue Places-
Corrections applied to Ledger places xxxy
Weights nsed xxxy
Explanation of separate columns of the Catalogue. xxxv
IV. Further Corrections to Catalogue Rigit Ascensions-
Examination of Pivot Errors xl
Correction to Equiuox xl
V. Further Corrections to Declinations-
Latitude and Refraction xliii
The Catalogue 1-27

CAPE FUNDAMENTAL CATALOGUE, 1900.

INTRODUCTION.

This Catalogue is based on meridian obscrvations of stars made with the new reversible transit circle from the year 1905 , when the instrument was first brought into regular use, to the end of the year 1911. Details of the observations, together with a full account of the methods of reduction, will be published in the volumes of Cape Meridian Observations covering the same period which are now being passed through the press. A full description of the instrument itself is contained in the History and Description of the Cape Observatory, to which reference may be made for detailed particulars. It is thus only necessary here to give an account of the processes employed for the formation of the Catalogue subsequently to the collection of separate results contained in the ledgers.

I.-Revision of Clock-Star System.

The entries in the ledgers, as contained in the Cape Meridian Observations, depend on Clock Errors derived with Newcomb's places for the standard clock stars. The observed Right Ascensions of the clock stars themselves were only retained as determinations and transferred to the ledgers in cases where at least five such were observed within a watch, which generally dia not exceed four hours in duration. Thus, though the individual star places obtained by combining the separate results will not accurately conform with those of Newcomb's Catalogue, it may be anticipated that the combination will reproduce in entirety any systematic errors of Right Ascension of Newcomb's Catalogue dependent on the Right Ascension itself, except such as involve fluctuations contained within narrow limits of Right Ascension. The latter will be to a large extent smoothed out in the process of combination.

Observations have been made in four different conditions of the instrument, distinguished as I. E., I. W., II. E., II. W. The symbols I. II. refer to the relative positions of the object glass and eye-end, I. denoting that the object.glass is adjacent to the reading 0° on the fixed circle, and II. that it is adjacent to the reading 180°. The symbols E. and W. (East and West) refer to the position of the Clamp. Observations in position I. were made in the years $1906,1907,1909,1910,1911$, and those in position II. in the years $1905,1908,1910$.

The entries in the ledgers were all obtained by referring the results of the separate observations to the epoch and equinox 1900 with Newcomb's proper motions. The means of the derived right ascensions of the clock stars dependent on the four different conditions of the instrument, together with their combination derived by taking the simple mean of the four without weighting, are contained in the following Table :-

Table I.-Right Ascensions of Clock Stars derived from Cape Ledgers.

Star.	Right Ascension $1900{ }^{\circ}$.					Corr. to Newcomb.	Star. Dec. 1900.	Right Asceusion $1900{ }^{\circ} \mathrm{O}$					Corr. to New. comb.
	I. E.	I. W.	II. E.	II. W.	Mean.			I. E.	I. W.	II. E.	II. W.	Mean.	
	h m s 0 8	$5 \cdot 11$	5	5.				h m	27.			${ }^{\text {S }}$	
	- 8 5.116	5^{1112}	5.110	5•105	5.111		47	$31527 \cdot 151$	$27 \cdot 128$	27.090	27-110	27.120	-019
23	1419.970	19.990	19.973	19.988	19.980	-008	- Tamri $+8_{41}$	$1925 \cdot 855$	$25 \cdot 830$	$25 \cdot 848$	$25 \cdot 853$	$25 \cdot 847$	$+\cdot 003$
+123	$2016 \cdot 578$	16.550	$16 \cdot 565$	16.547	$16 \cdot 560$	-016	¢ Tauri +923	2144.917	$44^{\circ} 903$	$44 \cdot 916$	$44 \cdot 910$	44.912	6
12 Ceti............. - 431	24 56.118	56.121	$56 \cdot 114$	$56 \cdot 130$	$56 \cdot 121$	- -019	f Tauri............ +1236	25 21.074	21.036	$21 \cdot 048$	21.042	21.050	- \cdot OI 5
13 Ceti............. - 49	$30 \quad 6.034$	6.033	$6 \cdot 054$	$6 \cdot 070$	$6 \cdot 048$	+.012	EEridani........... - 94^{8}	28 13.106	13.150	13. 124	$13 \cdot 138$	13.130	+ -0II
Lacaille 147 -2519	3212.551	12.551	12.526	12. 525	12.538	+.067	τ^{5} Eridani. -21 58	29 22.232	22.210	$22 \cdot 233$	$22 \cdot 273$	22.237°	+.053
B Ceti.............. -18 32	$3834 \cdot 226$	34.228	34^{-222}	34.218	34.224	- 002	\% Eridani........... - 106	3827.434	$27 \cdot 460$	$27 \cdot 420$	$27^{\circ} 430$	$27 \cdot 436$	-. 024
ς Andromedæ..... +2343	$42 \quad 2 \cdot 178$	2.180	2.160	2.142	$2 \cdot 165$	-.030	η Tanri +2348	$41{ }^{1} 2^{\circ} 301$	32.315	$32 \cdot 288$	$32 \cdot 318$	32.306	- -009
\% Piscinm........ +72	43 29.614	29*590	29.610	29.578	$29 \cdot 598$	- 010	τ^{6} Eridani -2333	$4232 \cdot 728$	$32 \cdot 704$	$3^{2} 73^{8}$	32'753	$32 \cdot 731$	+.004
20 Ceti. - 141	$4753 \cdot 835$	$53 \cdot 818$	$53 \cdot 8 \mathrm{If}$	$53 \cdot 813$	$53 \cdot$ S19	+ .031	γ Eridani -13 48	53 21.808	21-811	21.822	21.833	$2 \mathrm{I} \cdot 819$	- 002
Piscium +721	$5745^{1.130}$	45*154	45.146	$45 \cdot 122$	45.138	OII	入 Tauri......... +1212	$55 \quad 8 \cdot 354$	8.347	8.320	S. 346	8.342	- 007
η Ceti............... - 1043	1333.580	$33 \cdot 563$	$33^{\cdot} 546$	33.565	$33 \cdot 564$	-0.001	ν Tauri +543	57 50.180	50.163	50•182	50.143	50.167	-000
ζ Piscium $p r \ldots$ + +73	$830 \cdot 342$	30.336	30.330	$30 \cdot 387$	30•349	- 016	A Tauri........... +2149	$5846 \cdot 883$	46.930	46.908	45.886	46.902	-0.018
ө Ceti......... - 842	19 1.498	I 482	$1 \cdot 477$	I•502	I.490	+.006	43 Tauri +1921	$4 \quad 320 \cdot 364$	20.342	$20 \cdot 330$	$20 \cdot 328$	20.341	- 009
+1450	$\begin{array}{lll}26 & 7 \cdot 865\end{array}$	7.860	$7 \cdot 848$	$7 \cdot 860$	$7 \cdot 858$	+.006	0^{2} Eridani - 749	$1040 \cdot 158$	$40^{\prime} 162$	$40 \cdot 185$	40.165	40.168	+ $\cdot 008$
ν Piscium +459	$3613 \cdot 580$	13.567	$13 \cdot 567$	13.563	$13 \cdot 569$	-.023	γ Tauri $\ldots \ldots{ }^{+15} 23$	14 5.072	6.095	$6 \cdot 095$	$6 \cdot 078$	$6 \cdot 085$	- $\cdot 008$
-1628	3925.340	$25^{\circ} 328$	25.345	$25 \cdot 341$	$25 \cdot 339$	+-015	¢ Tauri +1718	17 10.006	10.017	10.006	9•993	10.006	+.005
+ 839	$40 \quad 6 \cdot 720$	$6 \cdot 707$	$6 \cdot 716$	6.730	6.718	-006	6 Tauri............. +1858	22 46.563	46•558	$46 \cdot 562$	46.550	46.558	- 029
¢ Ceti,.............. - 10 50	$4631 \cdot 465$	31*460	$31 \cdot 462$	31.470	3I 464	- .001	ข Eridani - 333	$3119 \cdot 308$	$19 \cdot 310$	19*339	19.330	$19 \cdot 322$	+-012
ξ Piscium.......... $+24^{2}$	$48.22 \cdot 685$	$22 \cdot 670$	22.697	22.653	22.676	+.008	53 Eridani -14 30	33 35-040	$36 \cdot 033$	36.053	$36 \cdot 062$	$36 \cdot 047$	+.070
及 Arictis +20 I9	$49 \quad 6 \cdot 846$	$6 \cdot 858$	$6 \cdot 855$	$6 \cdot 850$	$6 \cdot 852$	+.016	т Tauri. +2246	3614.529	14.517	14.493	14*492	14.508	- $\cdot 021$
¢ Ceti -21 34	5517.598	$17 \cdot 608$	17.612	17.620	17.610	+.031	μ Eridani.......... - 326	$4030 \cdot 112$	30.119	30.125	30.110	30.117	- $\cdot 001$
a Arietis.......... +2259	$2 \begin{array}{llll} \\ & 1 & 32 \cdot 044\end{array}$	32.050	$32 \cdot 043$	32.057	$32 \cdot 049$	-.009	π^{3} Orionis +647	$44 \cdot 24 \cdot 684$	$24 \cdot 682$	$24 \cdot 685$	24.628	$24 \cdot 670$	+.017
ξ^{2} Ceti +823	741.923	41•906	41•914	$41 \cdot 930$	41.918	+.003	π^{5} Orionis......... +217	49 2.519	$2 \cdot 533$	$2 \cdot 524$	$2 \cdot 543$	2.530	+ 003
67 Ceti.... - 653	1159.710	59.736	$59 \cdot 725$	59.733	$59 \cdot 726$	+.028	1 Tauri............ +21 27	$57 \quad 7 \cdot 057$	7.035	$7 \cdot 042$	7.038	7.043	-.034
326	1417.637	$17 \cdot 624$	17.653.	$17 \cdot 650$	17.641	-.021	¢ Leporis.......... -22 30	$\begin{array}{lllll}5 & 1 & 13.647\end{array}$	13.656	13.650	$13 \cdot 660$	13.653	-.009
+8	$22.50 \cdot 450$	$50 \cdot 458$	50.455	50.475	$50 \cdot 460$	- 01	β Eridani.......... - 513	255.988	55.996	55.998	$56 \cdot 028$	$56 \cdot 003$	-.013
+ 59	$3037 \cdot 548$	$37 \cdot 542$	37-505	37.530	$37^{\circ} 531$	+ 020	μ Leporis........ - 1619	826.354	26.37I	$26 \cdot 325$	$26 \cdot 343$	$26 \cdot 348$	- 019
+2132	33 8.123	8.173	$8 \cdot 145$	8.154	8.149	-.046	- Orionis........... - 029	1639.433	39.421	$39 \cdot 433$	39*441	39.432	+.027
- 6	$34{ }^{21} \cdot 345$	21•345	2I.355	21.345	$21 \cdot 348$	-. 025	¢ Orionis........... - 022	$2653 \cdot 873$	53.844	$53 \cdot 855$	$53 \cdot 870$	$53 \cdot 863$	+.014
$\boldsymbol{\gamma}$ Ceti seq. +249	$38 \quad 7 \cdot 150$	$7 \cdot 076$	7-093	7.140	7•115	+.029	a Leporis -17 54	28 19.174	$19 \cdot 174$	19.200	19.160	19.177	- .006
π Ceti............. - 1417	$3921 \cdot 785$	21.785	21-815	21•793	21.795	+.036	¢Orionis........... - 559	$3032 \cdot 468$	$32 \cdot 494$	$32 \cdot 454$	$32 \cdot 480$	$32 \cdot 474$	- 0007
μ Ceti............. $+94^{2}$	$3932 \cdot 100$	$32 \cdot 082$	$32 \cdot 123$	32:114	$32 \cdot 105$	+.007	§ Tauri.. +215	3140.070	$40 \cdot 058$	$40 \cdot 080$	$40 \cdot 065$	40.068	-. 014
σ Arietis........... +1440	45 58.218	58.198	58.186	58.194	58•199	--.009	§Leparis.......... -14 5^{2}	4225.455	25.456	25.450	25.449	25.453	+ -010
τ^{2} Eridaní -2125	$4630 \cdot 151$	30.166	30.125	30. 144	30.147	+.052	${ }^{\kappa}$ Orionis........... - 942	43 0.836	0.830	0.830	$0 \cdot 826$	0.831	+.005
η Eridani - 9 18	5132.498	$32 \cdot 501$	32.506	$32 \cdot 505$	$32 \cdot 503$	-018	I Geminorum..... +2316	$\begin{array}{lll}58 & 2.477\end{array}$	2.486	2.45^{8}	$2 \cdot 500$	2.480	- .020
a Ceti +342	$57 \quad 3.092$	3.078	3. 100	3.070	$3 \cdot 085$	+.016	ν Orionis........... +1447	6 1 51.726	$51 \cdot 732$	51.755	51.730	51.736	-.027
δ Arietis...... +1921	$3 \quad 554.540$	$54 \cdot 555$	54.560	54.538	$54 \cdot 548$	--015	η Geminor. seq.... +2232	850.472	$50 \cdot 467$	$50 \cdot 488$	50.443	50.468	-. 045

Table I.-continued.

Star.	$\begin{aligned} & \text { Dec. } \\ & \text { Igoo. } \end{aligned}$	Right Ascension $1900{ }^{\circ}$.					Curr. to New. Comb.	tar.	$\begin{aligned} & \text { Dec. } \\ & \text { Igoo. } \end{aligned}$	Right Ascension 1900%.					Corr. to NewComb.
		I. E.	1. W.	II. E.	11. W.	Mean.				1. E.	I. W.	II. E.	II. W.	Mean.	
μ	2234	$\begin{array}{ccc} \hline h & \mathrm{ml} & \mathrm{~s} \\ 6 & 16 & 54 \cdot 630 \end{array}$	$\stackrel{\mathrm{s}}{54 \cdot 660}$	$\begin{gathered} 8 \\ 54 \cdot 643 \end{gathered}$	$\stackrel{\mathrm{s}}{54 \cdot 653}$	$54^{\circ} \cdot 647$	-16		15 40	$\begin{array}{\|ccc\|} \hline \text { h } & \text { m } & s \\ \text { IO } & 44 & 41^{\circ} \end{array}$	$\begin{gathered} \mathrm{s} \\ 41 \cdot 440 \end{gathered}$	$41 \cdot 433$	$41^{\circ} 44^{8}$	4	${ }^{\text {s }}$. 027
β Canis Majoris	1754	1817.773	17.745	17.710	17’733	17.740	- 010	d Le	+ 49	5523.807	$23 \cdot 800$	23.788	$23 \cdot 824$	23•805	+.015
8 Monocerotis.	+ 439	1828.150	28.156	28.160	$28 \cdot 145$	28.153	-009	x Leonis	+ 753	5951.560	51×550	51•586	$51^{\circ} 580$	51-569	+ $\cdot 004$
10 Monocer	- 442	$231 \cdot 275$	1.276	1.270	I•306	82	--047	β Crater	-22 17	II 644.324	$44 \cdot 345$	44*334	44*356	44.340	+ 0.015
ν Geini	+2017	231.560	I. 525	I. 528	1•535	1 ${ }^{\text {¢ }} 537$	+-003	δ Leon	+21	$847 * 453$	$47 \cdot 445$	$47^{\prime} 45^{8}$	$47 \cdot 440$	47-449	--041
ξ Canis Majoris	-22 53	3051.903	51-879	51-884	51.901	51.892	- 028	θ Leoni	+1599	859.605	59*605	59.613	59.628	59.613	+ 022
15 Monocerotis	+959	$3528 \cdot 279$	$28 \cdot 269$	$28 \cdot 280$	28.273	28.275	+ - ${ }^{\text {ari }}$	δ Crateri	-14 14	$14.20 \cdot 420$	$20 \cdot 443$	20.445	$20 \cdot 442$	$20 \cdot 438$	+-011
ξ Geminoru	+13	39 40•677	$40^{\circ} 624$	$40 \cdot 598$	$40 \cdot 652$	40.638	+ 007	σ Leon	+ 635	15 58.823	$58 \cdot 822$	$58 \cdot 830$	$58 \cdot 833$	$58 \cdot 827$	14
IS Alonocero	+231	$4238 \cdot 524$	$38 \cdot 800$	$38 \cdot 79^{8}$	38.803	38.806	+ 021	τ Leon	+ 324	$2247 \cdot 703$	47'702	$47 \cdot 683$	47'704	$47 \cdot 698$	+-002
θ Canis Majoris.	1155	$4932 \cdot 638$	32.647	32.655	$32 \cdot 657$	32.649	-004	\checkmark Leon	16	3149.721	$49 \cdot 719$	$49^{\circ} 73^{6}$	49×740	49.729	+-004
γ Canis Majoris.	-1529	5914.074	14.041	$14^{\circ} 064$	14.070	14.062	- $\cdot 007$	β Leoni	+15	$4357 \cdot 560$	$57 \cdot 562$	57-576	$57 \cdot 590$	$57 \cdot 572$	- 012
${ }_{51}$ Geminoru	+16	$7 \quad 737.760$	$37 \cdot 767$	37.770	$37^{\prime} 720$	37.754	- 04	β Virgini	+ 220	45 29.189	$29 \cdot 183$	$29 \cdot 182$	29.203	29.189	+ 006
A Gemil	+1643	1220.795	20.805	20.806	20.809	$20 \cdot 804$	007	π Virgini	+ 710	5544.926	44-966	44.930	44.945	44•942	+.026
δ Geminor. se	+22 10	14.9 .078	9.079	9.066	9.070	-073	-034	- Virgi	+917	$12 \bigcirc 6.939$	$6 \cdot 917$	$6 \cdot 931$	$6 \cdot 931$	6.930	$\cdot 005$
β Canis Minoris..	+829	$2143 \cdot 705$	$43 \cdot 690$	$43 \cdot 680$	$43 \cdot 715$	$43 \cdot 698$	- 004	E Corvi	22	$458 \cdot 843$	$58 \cdot 842$	58.849	58.860	58.849	+ ${ }^{007}$
${ }_{25} \mathrm{M}$ Monoce	353	3218.416	18.400	18.388	18.406	18.403	+ 034	η Virgin	-0	$1447 \cdot 361$	$47 \cdot 357$	47.374	$47 \cdot 363$	$47 \cdot 364$	-028
26 Monocerot	919	$3628 \cdot 188$	28.194	$28 \cdot 207$	28.211	28.200	+ 053	¢ Corvi	-1558	$244^{1} 320$	$41 \cdot 323$	$41 \cdot 350$	$41^{1} 311$	$41 \cdot 326$	- ${ }^{\circ} 3^{2}$
${ }^{6}$ Geminor.	+2438	$3824 \cdot 688$	24.698	$24 \cdot 690$	$24 \cdot 684$	24.690	- 022	20 Con	+2127	$2441 \cdot 840$	$41 \cdot 803$	41.814	$41 \cdot 830$	41.822	- 075
ξ Argûs se	-24.37	$45 \quad 5 \cdot 326$	$5 \cdot 316$	$5 \cdot 332$	$5 \cdot 329$	$5 \cdot 326$	+ -008	β Co	-22 51	297.977	8 -010	7.996	7-986	7.992	+ 041
9 Puppis	$-13{ }^{-18}$	$47 \quad 8.492$	$8 \cdot 484$	$8 \cdot 480$	$8 \cdot 453$	8.477	- 009	24 Comæ	+1856	- 306.853	$6 \cdot 832$	6.836	6.820	6.835	- 008
ρ Argas	-24	$317 \cdot 118$	${ }_{17} \cdot 127$	${ }_{17} 1134$	${ }_{17} 164$	${ }^{17} \cdot 136$	+ 027	ρ Virgini	+10 47	$3^{6} 49 \cdot 398$	$49 \cdot 383$	$49 \cdot 378$	49*391	49•388	026
20 Puppi	-1529	$844 \cdot 185$	44•197	44.200	$44 \cdot 201$	44•196	+ -010	\% Virginis	+ 356	$5033 \cdot 980$	$33 \cdot 969$	33.962	33.950	33.965	+ 007
8 Canc	930	1150587	$5 \cdot 581$	$5 \cdot 584$	5.547	5.575	+ - 014	¢ Virginis	+1130	57 11.944	11.928	11-930	$\mathrm{II}^{1} 938$	11.935	-008
Bradiey	3	$2039 \cdot 843$	39-873	$39 \cdot 880$	$39 \cdot 853$	39	- ${ }^{\circ} \mathrm{og}$	θ Virgin	- 50	13446.294	$46 \cdot 297$	$46 \cdot 303$	$46 \cdot 317$	$46 \cdot 303$	+ 014
η Can	+20 47	$2655 \cdot 613$	55*629	55'590	$55 \cdot 613$	55.611	- -019	$\gamma \mathrm{H}$ ¢ dra	-22 39	1329.031	29:038	29.052	29.050	$29 \cdot 043$	+ 027
$\delta \mathrm{Hy}$	+63	$3^{2} 21.777$	21•793	21.768	21.793	$21 \cdot 783$	- ${ }^{-001}$	i Virgin	211	21 $26 \cdot 126$	$26 \cdot 147$	$26 \cdot 131$	26-116	$26 \cdot 130$	+ 013
$\delta \mathrm{Ca}$	+1831	$\begin{array}{lll}39 & 0 \cdot 195\end{array}$	0.220	0. 207	0.2		+ 000	ζ Virgin	-	$2935 \cdot 838$	35.811	35-821	35.823	35.823	+0.008
6 Hyd	+ 647	4128.863	28.886	28-862	$28 \cdot 872$	$28 \cdot 871$	- 006	m Virgin	-812	$3621 \cdot 772$	$21 \cdot 737$	${ }^{21} \cdot 776$	21.758	$21 \cdot 761$	+ ${ }^{017}$
14 Hyd	- 3	$4420 \cdot 243$	20. 243	20.241	20. 248	20. 244	-027	τ Boötis	+1757	$4230 \cdot 616$	30.605	30. 596	$30 \cdot 588$	30.601	- 005
$\zeta \mathrm{Hg} \mathrm{dra}$	+620	$50 \quad 6 \cdot 528$	49	6.473	6.511	1	- 029	89 Virgini	-1738	$4426 \cdot 187$	$26 \cdot 206$	$26 \cdot 233$	$26 \cdot 209$	$26 \cdot 209$	+ ${ }^{\text {c }}$ 23
a Cancri	+1215	53 I•124	$1 \cdot 140$	1.110	1-112	1-122	- 023	η Boötis	+1854	$4955 \cdot 383$	$55 \cdot 366$	$55 \cdot 387$	$55^{\circ} 406$	55.386	- 017
κ Cancr	+114	$92 \begin{array}{ll}9 & 19.924\end{array}$	19.899	19.902	19.915	19.910	- 008	τ Virgini	+2	$5633 \cdot 406$	33.390	$33 \cdot 384$	33.373	33. 388	- 015
$\theta \mathrm{Hyd}$	+244 +88	99760	9.730	9.754	$9 \cdot 752$	$9 \cdot 749$	-003	94 Virgin	-825	$14 \quad 0 \quad 59.983$	59.980	59.978	59.994	59.984	+ ${ }^{007}$
83 Can	+18	1324.103	24°	$24 \cdot 098$	$24^{\circ} \mathrm{O} 0$	$24 \cdot 085$	- 02 I	κ Virgin	- 949	733.607	33.605	$33 \cdot 630$	$33 \cdot 613$	$33 \cdot 614$	--009
${ }_{\text {a }}$ Hy	-814	$2240 \cdot 433$	$40^{\circ} \cdot 43^{8}$	$40 \cdot 445$	40*443	40.440	+ -018	، Virgini	- 531	10 $46 \cdot 196$	46.198	46.208	$46 \cdot 172$	$46 \cdot 194$	+ 012
ξ L	+1145	$2633 \cdot 426$	$33^{\circ} 415$	$33^{\circ} 43^{8}$	33.403	33.421	+ -013	λ Virgi	1255	$1341 \cdot 842$	$4 \mathrm{I} \cdot 847$	41.873	$41 \cdot 867$	41.857	+ ${ }^{\circ} 2$
- Hydr	-13 53	$3530 \cdot 750$	$30 \cdot 762$	30•773	30.750	30.759	+ 047	f Boötis	+1941	${ }_{21} 48 \cdot 268$	48.252	$48 \cdot 225$	$48 \cdot 256$	$48 \cdot 250$	- ${ }^{\text {o22 }}$
${ }^{\kappa} \mathrm{H}_{5} \mathrm{dr}$	+1021	$3548 \cdot 878$	$48 \cdot 873$	48•906	$48 \cdot 873$	48.883	+ 008	ζ Buötis	+14 9	$3622 \cdot 360$	$22 \cdot 354$	22.338	$22 \cdot 378$	$22 \cdot 358$	- $\cdot 047$
6 Sextar	- 346	$46 \quad 11 \cdot 719$	${ }_{11} \cdot 704$	${ }_{11} 716$	11.710	11.712	- 005	μ Virgini	- 513	$3747 \cdot 348$	47.342	$47 \cdot 35^{2}$	$47 \cdot 372$	$47 \cdot 354$	- -ori
π L	+831 +175	5455.796	$55 \cdot 784$ $52 \cdot$	$55 \cdot 767$	$55 \cdot 817$	55'791	+ $\cdot 008$	109 Virgi	+ 219	41 $1155{ }^{\text {c }}$	I1 ${ }^{5} 54$	11 550	11•522	11.545	-20
η Leo	+1715	1010 52.918	$52 \cdot 936$	$52 \cdot 898$	52-906	52.915	+ 069	a Libr	-15 3^{8}	$4520 \cdot 691$	20•704	20.688	$20 \cdot 723$	$20 \cdot 702$	+ ${ }^{\text {OII }}$
${ }^{1} \mathrm{Hyd}$	52	$542 \cdot 773$ 12	$42 \cdot 783$ 0.668	$42 \cdot 774$	$42 \cdot 795$	$42 \cdot 781$. 005	15 Librx	- 1	$5120 \cdot 450$	$20 \cdot 463$	$20 \cdot 43^{8}$	$20 \cdot 445$	$20 \cdot 449$	+-012
22 Sexta	- 734	1239.675	$39 \cdot 668$	39.693	39.664	$39 \cdot 675$	-02	Piazzi XIV.	+1451	$5130 \cdot 002$	$30^{\circ} 024$	29.987	29.980	29.998	+ $\cdot 006$
μ Hydre	620	2115.236	${ }^{15} \cdot 214$	15.244	${ }^{15} 250$	${ }^{15} 236$	+ ${ }^{\circ} 04$	- Lib	-1925	$\begin{array}{llll}15 & 6 & 31 \cdot 167\end{array}$	$3{ }^{1} \cdot 180$	31-201	31^{1770}	$31 \cdot 180$	$+\cdot 009$
ρ Leonis	+ 949	$2732 \cdot 503$	32.799	$32 \cdot 767$	32.776	$3{ }^{32} 786$	-017	β Libre	-9	$1137{ }^{\circ} 472$	$37 \cdot 482$	$37^{\circ} 482$	37.490	$37 \cdot 482$	-02
33 Sextantis,	- 113	3618.988 727.668	18.993	18.965	18.985	18.983	+ ${ }^{\circ}{ }^{1}$	30 Libre	-14 47	1727.037	$27 \cdot 059$	$27 \cdot 083$	27.040	27.055	'00
34 Sexta	+ 4	3727.668	$27 \cdot 705$	$27 \cdot 698$	27'703	27.696	-001	3	-1	$2236 \cdot 922$	$36 \cdot 914$	$36 \cdot 928$	36.920	$36 \cdot 921$	OH1
l Leonis	+11	$44 \quad 0.112$	$0 \cdot 092$	- 100	-076	-095	-023		-1427	$2955 \cdot 842$	$55 \cdot 853$	55.870	$55 \cdot 854$	55.855	026

Table I.-continued.

Star.	Right Ascension 1900\%					Corr. to New. Comb	Star.	Right Ascension $1900{ }^{\circ} \mathrm{O}$					Corr. to New. Comb.
	I. E.	I. W.	II. E.	II. W.	Mean.			I. E.	I. W.	II. E.	II. W.	Mean.	
a Serpentis....... $+{ }^{6} 44$	$\begin{array}{ccc} \mathrm{h} & \mathrm{~m} & \mathrm{a} \\ 15 & 39 & 20 . \\ 502 \end{array}$	$\begin{gathered} 8 \\ 20 \cdot 51 \end{gathered}$	$\begin{gathered} 9 \\ 20 \cdot 515 \end{gathered}$	$\begin{gathered} 9 \\ 20 \cdot 493 \end{gathered}$	20. 505	-002		$\begin{gathered} \text { h ma } \\ 195024 \cdot 107 \end{gathered}$		$\begin{gathered} 8 \\ 24^{\circ} 084 \end{gathered}$	\mathbf{s}		
8 Sarpentis........ +1544	4134.288	34*314	34.310	34.294	34.302	-.052	$\boldsymbol{\gamma}$ Sagittæ.......... +1913	$54 \quad 18 \cdot 576$	18.565	18.592	18.583	18.579	-.008
${ }_{x}$ Serpentis........ +1827	4414.278	$14^{\circ} 254$	14.268	14.252	14.263	-.013	ө Aquilæ.......... - 17	$20 \quad 6 \quad 8 \cdot 743$	8.758	$8 \cdot 752$	$8 \cdot 757$	$8 \cdot 753$	+.018
μ Serpentis........ - 37	4424.039	24*044	$24^{\circ} 032$	$24^{\circ} 035$	24.038	+.005	a^{2} Capricorni...... -12 51	1230.437	30'468	$30 \cdot 442$	$30^{\circ} 412$	30.440	+-021
E Serpentis........ +447	$4549 \cdot 820$	$49 \cdot 804$	$49 \cdot 804$	$49 \cdot 838$	$49 \cdot 817$	-.013	A Capricorni....... - 15	1523.645	23.633	$23^{\circ} 630$	$23 \cdot 640$	$23 \cdot 637$	- $\cdot 005$
γ Serpentis +1559	5149.990	$49^{\circ} 992$	49'994	50.002	49'995	- -033	¢ Delphini........ +1058	$2826 \cdot 142$	$26 \cdot 117$	$26 \cdot 113$	26.144	26.129	-.018
8 Scorpii............ -22 20	$5425 \cdot 144$	25.137	25'144	25.141	25.142	+-012	β Delphini........ +1415	$325^{\prime \prime} 590$	51.564	51.595	5 1.575	51.582	- 036
- Scorpii pr....... -19 32	$5937 \cdot 254$	$37 \cdot 290$	$37 \cdot 263$	37-279	$37 \cdot 272$	+.036	v Capricorni -18 29	3421.483	21.478	$21 \cdot 513$	21.503	21.494	+.010
5 Ophiuchi......... - 326	$\begin{array}{llll}16 & 9 & 6 \cdot 273\end{array}$	6.265	$6 \cdot 250$	$6 \cdot 258$	$6 \cdot 262$	+.002	a Dalphini........ +1534	3459.600	$59^{\circ} 573$	$59 \cdot 600$	59.598	59.593	- 019
¢ Ophiuchi......... - 427	1311775	1.749	$1 \cdot 752$	1.763	I.760	+.002	E Aquarii......... - 952	$4215 \cdot 824$	15.824	$15 \cdot 820$	15.823	$15 \cdot 823$	+.016
$\boldsymbol{\gamma}$ Herculis......... +1923	1730.477	30.493	$30 \cdot 506$	30.496	30.493	-. 015	μ Aquarii......... - 922	$4715 \cdot 663$	15.676	15.683	15.663	15.671	+.016
入 Ophiuchi m.... +212	$2552 \cdot 198$	52.158	$52 \cdot 146$	52.168	52'168	+ -013	32 Vulpeculæ...... +2741	$50 \quad 17 \cdot 839$	$17 \cdot 836$	$17 \cdot 862$	$17 \cdot 842$	17.845	-.039
в Herculis +2142	25 55.212	$55^{\prime 2} 20$	55.255	$55 \cdot 208$	$55^{\circ 229}$	+ -0,	θ Capricorni........ -17 3^{8}	21 -19.642	$19 \cdot 625$	19.636	19.612	19.629	+.023
\% Ophinchi......... -10 22	3139.078	39.086	39.090	$39^{\prime} 102$	$39 \cdot 089$	- $\cdot 01$	ע Aquarii.......... - 1147	$48 \cdot 848$	8.866	8.880	8.865	8.865	+.019
49 Herculis....... +15 9	$4731 \cdot 654$	$31 \cdot 637$	3I•649	3I 657	$31 \cdot 649$	-.025	a Equulei.......... +450	$1049 \cdot 506$	49.542	$49^{\circ} 535$	49.528	$49^{\circ} 528$	+.012
κ Ophiuchi........ +932	$5256 \cdot 064$	$56 \cdot 052$	56.070	$56 \cdot 058$	$56 \cdot 061$	- 009	، Capricorni........ -17 16	$1640 \cdot 780$	$40 \cdot 764$	40•786	$40 \cdot 787$	40.779	008
η Ophiuchi m......-15 36	17 4 4 38.554	$38 \cdot 558$	$38 \cdot 540$	$38 \cdot 560$	38.553	+.032	1 Pegasi +1923	17.27 .680	$27 \cdot 708$	$27 \cdot 680$	$27 \cdot 662$	27.683	-. 024
\% Herculia +2457	10 55.417	$55^{\prime} 428$	55.393	$55 \cdot 365$	55.401	-.025	¢Capricorni....... -22 51	$2057 \cdot 546$	$57 \cdot 556$	$57 \cdot 540$	57.554	57.549	- 010
O Ophiuchi......... -24 54	15 52.049	52.060	$52 \cdot 03^{8}$	$52 \cdot 048$	52.049	+.010	B Aquarii......... - 6	$2617 \cdot 727$	$17 \cdot 731$	17.735	17:745	17.735	+.019
d Ophiuchi......... -29 47	$2058 \cdot 080$	$58 \cdot 102$	58.084	58.080	58.087	+-071	ξ Aquarii........... - 818	32 25 755	$25^{\circ} 755$	25.740	25.748	25.750	- CO_{4}
σ Ophiuchi +414	$2133 \cdot 157$	$33^{1} 152$	$33^{\prime} 138$	33.158	33.151	020	γ Capricorni....... $-17 \quad 7$	34 33*090	$33 \cdot 079$	33.073	$33 \cdot 085$	33.082	- 017°
a Ophiuchi........ +1238	$3017 \cdot 552$	17.553	$17 \cdot 532$	17.530	17.542	+.005	¢ Pegasi............ +925	$3916 \cdot 480$	16.465	16.476	$16 \cdot 498$	16.480	+ 012
ξ Serpentis......... -15 20	$3151 \cdot 602$	51-618	$51 \cdot 612$	$51^{\cdot 610}$	51.611	+.024	\% Capricorni....... -16 35	$4131 \cdot 350$	31•344	$31 \cdot 376$	31-388	31.365	+ 021
8 Ophiuchi +437	3831.944	31.934	$31 \cdot 932$	31.932.	31.936	OII	16 Pegasi.. +2527	48 30.660	30.675	30.668	$30 \cdot 675$	30.670	- 035
ν Ophiuchi......... - 946	53 31.284	31.272	$31 \cdot 265$	31-266	$31 \cdot 272$	+ 007	a Aquarii.......... - 04^{8}	22 - $38 \cdot 898$	$38 \cdot 897$	$38 \cdot 886$	$3^{8 \cdot 914}$	$38 \cdot 899$	+.003
67 Ophiuchi....... +256	$5538 \cdot 196$	$38 \cdot 170$	$38 \cdot 170$	38-168	$3^{8 \cdot 176}$	-.045	, Aquarii........... - 1421	12.268	2. 260	$2 \cdot 233$	$2 \cdot 255$	2.254	+.027
72 Ophinchi....... +933	$\begin{array}{llll}18 & 2 & 36 \cdot 533\end{array}$	$36 \cdot 520$	$36 \cdot 516$	36.538	$36 \cdot 527$	+ :013	0 Pagasi...... +542	$5 \quad 9 \cdot 340$	$9 \cdot 330$	9.308	9.328	$9 \cdot 326$	-024
μ Sagittarii........ -21 5	$746 \cdot 985$	$46 \cdot 982$	$46 \cdot 988$	$46 \cdot 980$	46.984	+.019	- Aquarii.......... - 817	$1133^{\circ} 45^{8}$	$33^{\circ} 448$	$33^{\circ} 447$	$33^{\circ} 473$	33.457	+.013
η Serpentis......... - 255	$168 \cdot 130$	$8 \cdot 132$	8.130	8.128	8.130	+0.028	γ Aquarii.......... - 153	1629.523	29.508	$29^{\circ} 470$	$29^{\circ} 530$	29.508	+.012
109 Herculis +21 43	19 26.163	26.190	$26 \cdot 165$	26.193	$26 \cdot 178$	-.015	σ Aquarii.......... -II II	25 21.352	$2 \mathrm{I} \cdot 362$	$21 \cdot 362$	21'347	21.356	-.014
入 Sagittarii........-25 29	$2147 \cdot 966$	47'967	47 9 948	47-980.	47'965	+.001	η Aquarii - o 38	$3013 \cdot 123$	$13 \cdot 080$	13.081	13'103	13.097	+0.011
Scuti 4 H.........-9 9	$3647 \cdot 909$	47-904	47.912	47.923	47•912	-.032	§ Pagasi +1019	3628.455	28.442	$28 \cdot 453$	28.440	28.448	-.026
¢ Sagittarii........ -27 6	39 24*552	24.564	$24^{\circ} 554$	24.578	$24^{\cdot} 562$	+.031	λ Pegasi +232	$4142 \cdot 798$	$42 \cdot 814$	$42 \cdot 780$	42.764	42.789	-.025
110 Herculis...... +2027	4121.448	21.478	21.483	21.443	21.463	+ 006	λ Aquarii........... - 87	$47 \cdot 23 \cdot 896$	$23 \cdot 898$	23.883	$23 \cdot 894$	23.893	+.013
© Scrpentis $p r . \ldots .+44$	5114.924	14.900	14.918	14.908	14.913	+.029	\% Aquarii...........-16 21	49 20.658	20.650	$20 \cdot 667$	$20 \cdot 668$	20.661	+.033
ξ Sagittarii -2114	$5145 \cdot 881$	$45 \cdot 882$	$45 \cdot 863$	$45 \cdot 870$	45.874	+ 019	a Pegasi +1440	59 46.743	$46 \cdot 773$	$46 \cdot 740$	$46 \cdot 725$	$46 \cdot 745$	+.004
¢ Aquilæ.......... +1456	$55 \quad 5 \cdot 047$	$5 \cdot 033$	5.030	5*025	5.034	+ 007	c^{2} Aquarii -21 43	$\begin{array}{lllll}23 & 4 & 6 \cdot 939\end{array}$	$6 \cdot 973$	$6 \cdot 941$	$6 \cdot 953$	$6 \cdot 952$	+.025
ζ Aquilæ pr....... +1343	$19048 \cdot 848$	$48 \cdot 823$	$48 \cdot 803$	$48 \cdot 808$	$48 \cdot 821$	- 010	γ Piscium......... +244	$1158 \cdot 873$	$58 \cdot 875$	58.870	$58 \cdot 873$	$58 \cdot 873$	-000
λ Aquilæ.......... - 5 2	- $56 \cdot 530$	$56 \cdot 543$	56.553	$56 \cdot 537$	56.541	+.013	τ Pegasi........... +2312	$1541 \cdot 185$	41.170	41.188	$41 \cdot 170$	41.178	002
π Sagittarii........ -21 11	$349{ }^{\circ} 035$	49.050	$49 \cdot 058$	49'077	49.055	+.020	v Pagasi +2251	2023.204	23.237	23.226	23.220	$23 \cdot 222$	-. 018
ψ Sagitarii -25 26	924.572	$24 \cdot 567$	$24^{*} 593$	$24 \cdot 598$	24.583	+.026	${ }_{\kappa}$ Piscium......... $+0{ }^{4}$	2148.360	48.370	$48 \cdot 367$	48.388	48.371	- 010
ω Aquilæ.......... +1125	$13 \quad 7 \cdot 362$	$7 \cdot 320$	$7 \cdot 356$	$7 \cdot 362$	7.350	- 0.16	70 Pegasi.......... +1213	$24 \quad 5 \cdot 812$	$5 \cdot 820$	$5 \cdot 813$	$5 \cdot 792$	$5 \cdot 809$	+ 010
§ Aquilæ........... +255	$2027 \cdot 408$	27.405	$27 \cdot 408$	27.415	27.409	+.016	: Piscium.......... +55	$344^{8 \cdot 370}$	48.392	. $48 \cdot 390$	$48 \cdot 372$	$48 \cdot 3^{81}$	- ${ }^{1} 1_{3}$
μ Aquilæ.......... +7 ¢ 10	2912.255	12.234	$12 \cdot 242$	12.265	12.248	-.033	ω^{2} Aquarii pr......-15 6	37 32.223	32.229	32.233	32.193	32.220	+:002
54 Sagittarii....... -16 31	34 59'703	59.705	$59^{\circ} 713$	59.698	59'705	+ 005	ϕ Pegasi........... +1834	4723.998	23.995	23.968	23.964	23.981	+.005
f Sagittarii,....... -20 0	$4031 \cdot 776$	31 $\cdot 748$	31 790	31 797	3I•778	+ .018	ω Piscium........ +619	54 10. 542	10. 527	10.570	$10 \cdot 518$	$10 \cdot 539$	- 012
	$4130 \cdot 340$	$30 \cdot 330$	$30 \cdot 363$	30.344	30.344	+.011	2 Ceti..............-17 54	$5837 \cdot 048$	$37 \cdot 063$	37-053	37-063	$37 \cdot 057$	+.006
\% Sagittæ.......... +1817	4255.690	55'740	55.720	$55 \cdot 715$	55:716	-.026							

On comparing the entries in columns $3,4,5$, and 6 of this table with the mean contained in column 7 , the discordances between right ascension observations made in the four conditions of the instrument may be summarised as follows :-

Table II.-Discordances between Time Determinations in the Four Different Conditions of the Transit Circle.

R.A.	$\Delta \alpha$.				No. of Stars.
	I. E.	I. W.	II. E.	II. W.	
h_{i}^{h}	$\begin{array}{r} 8 \\ +0.004 \end{array}$	$\begin{aligned} & 8 \\ & +0^{8} 002 \end{aligned}$	$\begin{gathered} 3 \\ -0^{\circ} \cdot 001 \end{gathered}$	$\stackrel{\mathrm{s}}{-0.006}$	11
$1-2$	+.003	-.005	-.003	+.005	11
2-3	-000	- .003	-.002	+.004	15
3-4	$+.001$	-000	-.004	+.002	14
4-5	+ 001	+ 0001	+.004	-.006	12
5-6	- .001	-000	-.004	+:004	$1{ }^{1}$
$6-7$	+.007	- 005	-.004	+.001	13
$7-8$	+.003	+.001	-.001	-.003	9
8-9	-.003	+.006	-.005	+ 001	11
9-10	+.004	-.009	+.005	-.002	9
10-11	-.002	-000	-.003	+.003	11
11-12	-.007	-000	-.001	+.008	10
12-13	$+\cdot 005$	-.004	+.001	-.003	10
13-14	+.001	-.005	+.004	. 000	9
14-15	-.001	+.002	- .003	+.002	11
15-15	-. 006	-000	+.005	-.001	13
16-17	$+.002$	- 004	+.001	-000	8
17-18	$+.006$	+.007	-.007	-.006	10
18-19	. 000	+ 001	-.003	+.002	11
19-20	-.001	-.008	+.005	+.004	13
20-21	-000	-.004	+.004	- 001	10
21-22	-.004	. 000	+001	+.003	12
22-23	$+.007$	+.002	- -011	+ 001	12
23-24	-0.003	+0.006	+0.003	-0.007	11

There appears to be no sensible trace of systematic run in these residuals, as may be expected since each column is necessarily constrained to follow the system of C. F. C., 1900.

Newcomb's Catalogue. If we similarly compare the mean results with those of Newcomb's Catalogue, the comparison may be summarised as follows :-

Table III.-Comparison of Cape Ledgers with Newcomb's Catalogue in order of Right Ascension.
(Cape Ledgers-Newcomb).

R. A.	Δa.	No. of Stsrs.	R.A.	$\Delta \boldsymbol{a}$.	No. of Stars.
h h	8		h h	s	
- I	-0.001	11	12-13	-0.013	10
1-2	+.003	11	13-14	+.007	9
2-3	+ .004	15	$14-15$	-.003	11
$3-4$	-.003	14	$15-16$	-. 007	13
4-5	+ $\cdot 001$	12	16-17	- 003	8
5-6	- .003	11	17-18	+.005	10
$6-7$	- 012	13	18-19	+ 010	11
7-8	- 002	9	19-20	+.002	13
8-9	- .006	11	20-21	-.004	10
9-10	+.006	9	21-22	+ .001	12
10-11	+ .009	11	22--23	+ 0002	12
$11-12$	+0.002	10	23-24	-0.001	11

Here again the differences are insignificant. If, however, we arrange the stars in order of declination, we derive the following summary of results :-

Table IV.-Comparison of Cape Ledgers with Newcomb's Catalogue in order of Declination.
(Cape Ledgers-Newcomb).

Limits of Declination.					$\Delta \mathrm{a}$.	No. of Stars.	Limits of Declination.					$\Delta \boldsymbol{a}$.	No. of Stars.
												8 +0.004	
$+27$			+22		-0.023	11	+ 2			-0		$+0.004$	11
+22	46	"	+21	5	-. 028	11	- 0	29		- 3		+ 011	11
$+21$	4	,	+19	20.	-.013	11	- 3	26	"	- 5	0	+ 002	11
+19		"	+17	15	-. 004	12	- 5	2	"	-8	11	+ 0007	11
$+16$	43	,	+14	51	-.015	11	- 8	14	"	-9		+.004	11
+14	50	"	$+12$	36	- 013	11	-9	42	"	- II	46	+.002	12
+12	15	"	+10	22	- 013	11	-11	52	"	-14	21	$+.014$	11
+10	21	,	+ 9	17	-000	11	-14	27	"	-15	38	+ 011	11
$+8$	40	"	$+7$	2	-002	11	-15	40	"	-17	37	+.004	12
$+7$	2	",	$+5$		-. 007	11	-17	3^{8}	"	-2I	10	+ .011	11
$+5$	9	"	$+4$		-.003	11	-21	14	"	-22		+.024	11
$+3$	56	"	$+2$		+.003	11	-22	50	"	-29	47	+ 018	11

Thus the observations indicate a correction to the adopted clock star places, dependent on the declination, which is zero at, or slightly to the north of, the equator,
but which increases southwards at the rate of about $0^{\mathrm{s}} 001$ per degree of declination. The effects of such an error on the periodic errors in R.A. will, however, be insignificant, as the clock stars in the higher declinations are fairly uniformly distributed in right ascension, as is evidenced by the following table, showing the distribution of clock stars in declination.

Thable V.-Distribution of Clock Stars.

R.A.	Mean Dec.	No. of Stars.	R.A.	Mean Dec.	No. of Stars.
h h	-	11	h ${ }_{\text {h }}$	+	IO
1- 2	- 1	11	$13-14$	+ 3	9
2-3	+ 3	15	$14-15$	2	11
3-4	+ 4	14	$15-16$	-4	13
4-5	+ 8	12	16-17	+6	8
5-6	-4	11	$17-18$	- 5	10
6-7	+ 3	13	$18-19$	- 3	11
7-8	+ 4	9	$19-20$	0	13
8-9	+ 3	11	20-21	+ 4	10
9-10	+ 4	9	21-22	- 4	12
$10-11$	\bigcirc	11	$22-23$	J	12
$11-12$	$+3$	10	23-24	+ 3	11

In consideration of this approximate symmetry of distribution any errors in the right ascensions of Newcomb's Catalogue dependent on the declinations may be regarded as sensibly eliminated from the meau results of the Cape Ledgers, and so far as such errors are concerned the latter may be regarded as defining an independent fundamental system. In so far, however, as the errors of the original system depend on the right ascension they will ouly be partially smoothed out, the more wide-spread features being reproduced almost in their entirety. To examine such crrors recourse must be had to additional observations which have not otherwise been included in the formation of the Catalogue.

Discussion of Daylight Observations of Clock Stars.

In addition to the observations made in the night watches directly for the purposes of the Catalogue, regular observations of the Sun and inferior planets have been made by day. These have always been accompanied by observations of bright stars for the determination of clock error. The stars used are for the most part contained in the above clock star list, but include also the following additional stars, the places quoted being derived from the Cape Ledgers in the same manner as for the former stars.

Thable VI．－Additional Clock Stars used for Daylight Observations．

Star． Dec． 1900.	$\underset{1900}{\text { R．}}$ A．	Corr．to New． comb．	Star．	$\begin{aligned} & \text { Dec. } \\ & \text { igoo. } \end{aligned}$	R．A． 19000°.	$\begin{aligned} & \text { Corr. to } \\ & \text { Now. } \\ & \text { comb. } \end{aligned}$
a Tauri．．．．．．．．．．．．．+16 18	43010.914				$\mathrm{hr} \mathrm{m}^{\text {m }}$	
a Tauri．．．．．．．．．．．．．+1618 β Orionis．．．．．．．． 819	$\begin{array}{llll}4 & 30 & 10.914 \\ 5 & 9 & 43.936\end{array}$	+0.024 $+\quad .039$	γ Corvi	－16 59	121039.740	01
β Orionis．．．．．．．．．．．-819 γ Orionis．．．．．．．． 616	$\begin{array}{llll}5 & 9 & 43.936 \\ 5 & 19 & 46.044\end{array}$	+039 $+\quad .016$	a Virgin	－1038	131955.432	001
γ Orionis．．．．．．．．．．+616 β Leporis seq．．．．． 2050	$\begin{array}{llll}5 & 19 & 46.044 \\ 5 & 23 & 57.607\end{array}$	＋ 016 .041	a Boötis．	＋1942	141116.017	＋ 017
β Leporis seq．．．．．．${ }^{-20} 50$ ϵ Orionis．．．．．．．．．${ }^{\text {－}} 116$	$\begin{array}{lllll}5 & 23 & 57.607 \\ 5 & 31 & 8.356\end{array}$	－ 041 $+\quad 017$	γ Scorpi	2453	$\begin{array}{llllll}14 & 58 & 12.932\end{array}$	－． 021
a Orionis．．．．．．．．．．．．+723	549	＋ 030	π $\bar{\pi}$ Scorpii	1	$15{ }^{1} 12488.050$	． 008
ζ Canis Majoris．．．－ 30 I	61628.457	＋ 057	a Scorpii			－013
γ Geminorum ．．．．．．+1629	63156.119	－ 003	ϵ Scorpii．	－34 7	164341×157	a $+\quad .009$ $+\quad .067$
a Canis Majoris．．．－16 35	$64044 \cdot 633$	＋ 139	γ Sagittarii	－30 26	$17 \begin{aligned} & 17923.072\end{aligned}$	＋．071
ϵ Canis Majoris ．．．－28 50	$65441 \cdot 744$	＋ 002	\％Sagittarii	－29 5^{2}	$181435 \cdot 542$	＋．010
δ Canis Majoris．．．－26 14	$7 \quad 4{ }^{7} 19.542$	＋．058	¢ Sagittarii	－34 26	$18 \quad 17 \quad 32 \cdot 136$	＋．068
η Canis Majoris．．．－29 6	7208860	－058	σ Sagittarii	－26 25	$18 \quad 49 \quad 3.929$	＋ 066
a Cauis Minoris．．．+529	$\begin{array}{llll}7 & 34 & 4089\end{array}$	＋ 035	ζ Sagittarii	－ 30	$18 \quad 5614.998$	＋ 028
β Geminorum ．．．．．．+2816	73911.845	－ 022	a Aquilæ．	＋836	194554.263	＋ 002
ϵ Leonis ．．．．．．．．．．．+2414	94010.585	－．002	a Piscis Au	－30	$22 \quad 527.580$	＋．010
a Leonis．．．．．．．．．．．＋ 1227	$\begin{array}{lll}10 & 3 & 2.857\end{array}$	＋ 016	β Pegasi．．．	＋2732	$22 \quad 5855.496$	－．037
¢ Hydræ．．．．．．．．．．．．－31 18	$\begin{array}{lllll}11 & 28 & 4.927\end{array}$	－ 010				

Clock errors have been derived at the instant of each daylight transit，utilising the places of the stars as contained in the above tables and Newcomb＇s proper motions． Care has always been taken to control the level and azimuth variations by simultaneous reference to the nadir trough and meridian marks．

The clock errors at the same instants have also been derived by interpolation from adjacent night watches，assuming a uniform rate derived from observations approxi－ mately twenty－four hours，or a multiple thereof，apart．The details of the comparison between the two methods of determination are contained in the following table：－

Table VII．－Comparison of Day and Night Determinations of Clock Error．

Date．	竒	$\begin{gathered} \text { S.T. of } \\ \text { Say } \\ \text { Obs. } \end{gathered}$	$\begin{aligned} & \text { Mean } \\ & \text { S.T. of } \\ & \text { Night } \\ & \text { Obs. } \end{aligned}$	$\begin{aligned} & \text { Diff. } \\ & \text { Day- } \\ & \text { Night. } \end{aligned}$	Date．	彦	$\begin{gathered} \text { S.T. of } \\ \text { Day } \\ \text { Obs. } \end{gathered}$	Mean S．T．of Night Obs．	$\begin{aligned} & \text { Diff. } \\ & \text { Day- } \\ & \text { Night. } \end{aligned}$	Date．	$\dot{4}$ $\stackrel{4}{4}$ 品 0	$\begin{aligned} & \text { S.T. of } \\ & \text { Day } \\ & \text { Dobs. } \end{aligned}$	$\begin{aligned} & \text { Mean } \\ & \text { S.T. of } \\ & \text { Sight } \\ & \text { Obs. } \end{aligned}$	Diff． Day－ Night．
1908．${ }_{\text {May }}$.		h m	$\mathrm{bl}^{\mathrm{b}} \mathrm{m}$	${ }_{-}{ }^{\text {s }}$	1908.		h m	h m	${ }^{8}$	1908．		$\mathrm{b} \quad \mathrm{m}$	h	${ }^{8}$
	M	－ 39	1123	－0．03	May 13	M	－ 39	1212	－0．02	May 20	RC	510	1142	－0．03
		510	＂	＋ 05			510	＂，	＋．06			520		＋－07
		520	＂	． 00	17	JJ	－ 39	127	－ 01	20	C	－ 39	1138	－ 07
	C	－ 39	116	－．03	17		257	＂	＋．08	20		119	＂，	＋ 01
		430	＂	－ 07	18		510	＂	＋．06	21		510	＂	－． 03
		510	＂	－． 04	18		520	＂	＋ 07	21		； 20	＂	＋ 02
	AW	－ 39	1122	＋${ }^{\circ} 2$	18	M	－ 39	1215	－ 01	26	AW	257	132	－0
		$5 \quad 3$	＂	＋．08	19		510	＂	＋ 02	27		618	＂	$+.05$
		510	＂	＋．06	19		520		＋．08	27		654	$"$	＋ 02
		520	＂		19	RC	－ 39	1142	－－03	27		74	＂	＋ 03

Table VII.-continued.

Date.		$\begin{aligned} & \text { S.T. of } \\ & \text { Day } \\ & \text { Obs. } \end{aligned}$	Mean S.T. of Nigbt Obs.	$\begin{aligned} & \text { Diff. } \\ & \text { Day- } \\ & \text { Night. } \end{aligned}$	Date.		$\begin{aligned} & \text { S.T. of } \\ & \text { Day } \\ & \text { Obs. } \end{aligned}$	$\begin{gathered} \text { Mean } \\ \text { S.T. of } \\ \text { Night } \\ \text { Obs. } \end{gathered}$	Diff. Day- Night	Date.		$\begin{aligned} & \text { S.T. of } \\ & \text { Day } \\ & \text { Das. } \end{aligned}$	$\begin{aligned} & \text { Mean } \\ & \text { S.T. of } \\ & \text { Night } \\ & \text { Obs. } \end{aligned}$	$\begin{aligned} & \text { Diff. } \\ & \text { Day } \\ & \text { Night. } \end{aligned}$
runeJune	M	$\begin{array}{ll} h & m \\ 6 & 41 \end{array}$	$\left.\begin{array}{rr} \mathrm{h} & \mathrm{~m} \\ \mathrm{y} 2 & 49 \end{array} \right\rvert\,$	+0.01	$\begin{gathered} 1908 . \\ \text { July } 15 \end{gathered}$	RC	$\begin{array}{ll} h & m \\ 5 & 32 \end{array}$	$\begin{array}{cc} \mathrm{h} & \mathrm{~m} \\ 16 & 37 \end{array}$	+0.01	$\begin{gathered} 2908 . \\ \text { Sept. } \end{gathered}$	RC	$\begin{array}{rr} \mathrm{h} & \mathrm{~m} \\ 10 & 3 \end{array}$	$\begin{array}{rrr}\text { b } \\ 20 & 14 \\ & 14\end{array}$	+0.05
		654		- 02	15		543		+.03	13	M	923	1952	+ 02
	JW	149	13	+ 03	16	AW	532	1637	+.04	14	AW	923	204	+ 12
		21		+ ${ }^{\circ} 7$	16		543		+ 05	14		103		. 08
		257		+ 02	16		619		-1	15	JJ	923	2038	+ 07
	AW	257	1340	-. 04	19	JJ	510	1529	+ 03	15		103		+ 03
		430		+ 02	19		20°		+ 02	21	JJ	923	2031	+ 03
		641		+ 02	19		532	"	+.01	21		103		+ 13
		74		- 01	19		543		+ .06	2	AP	923	2049	+ 01
	AW	53	1410	+ 02	20	M	655	1529	+ 03	22		103		- 01
		510		+ 05	20		75	"	+ 08	23	AW	923	212	+.03
		7	",	-. 01	20		734		+ 05	23		103		-.01
		720		- 02	22	C	520	1620	+ 04	24	M	923	$20 \quad 57$	+-01
	M	510	1410	+ 05	22		531	,	+.05	24		103		+.02
		$7 \quad 5$	"	-00	22		543		+ 05	27	JJ	103	2114	+ 01
		720		+ ${ }^{\circ} 3$	23	AP	510	1618	+-03	29	JW	923	$20 \quad 56$	- 03
	RC	510	1425	-. 01	23		520	"	+ 02	29		103		+ 03
		$7 \quad 5$	",	- .06	23		532	"	+ 03		AP	${ }^{9} 23$	21	-.03
		720		-. 01	23		543		+ -06	30		103	"	- 0.5
	AP	257	1440	+.03	26	JW	510	1626	+ 03	Oct. 1		1411		- 03
		$\begin{array}{ll}3 & 19\end{array}$	"	-. 02	26		720	"	+ 04		RC	923	2119	$\cdot 0$
		329	,	- . 05	26		734		+ 01	1		103		\bigcirc
		430	",	-00	27	AW	532	1633	+ -08		M	10	2156	-.01
		510		+ 04	27		543	"	+ 10	6	AW	119	2156	- 02
	C	510	1440	+ 10	27		618		+.02	6		1144	"	- .03
		543	"	+ 07	29	M	641	1653	- 01	7		1411		+ 03
		720		+ 07	29		655	",	- 01	7	C	103	2230	+ 03
	C	520	150	+ 12	29		75	"	- 01	8		1411	"	+ 03
		5		+ 09	29		734	"	-.05	8	AP	103	2230	+ 05
		734	"	+.03	30	AP	74	17 ○	+ 01	8		119	"	+.04
	AP	510	1457	+.03	30		734	"	+ 04	8		1144		-.06
		520	"	+.01	Aug.	JJ	619	$19 \bigcirc$	$\cdot 0$	9		1411		- 10
		532	"	-. 01	- 9		55	"	-	15		1144	2220	-. 06
		543	"	- 05	9		734		-.01	18	C	119	2131	- 02
		734	,	-	10	M	734	18 ¢ ${ }^{1}$	-. 03	18		1344		-00
July $\begin{array}{rr}5 \\ 5 \\ 5 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6\end{array}$	JJ	532	1520	+.08	11	RC	655	1746	+ 04	21		1144	2250	--07
		543		+ 02	11		720	"	+ 04	22	AW	119	239	+.04
	AW	430	1520	+ 10	11		734		+ 05	22		1144	"	+ -09
		53	"	+.05	14	AW	$\begin{array}{ll}11 & 9\end{array}$	1830	-. 08			1211		+.06
		510	"	+ 02	14	JW	632	1848	-.03	Nov.		1144	2313	-.02
			"	+ 08	14							1211		+.02
		532		+ 04	14		655			12	JW	1320	2340	- 01
	AP	430	1520	+.04	16	JJ	641	1816	+ 06	12		1411		-.01
		532	"	$+\quad 05$ $+\quad 03$	16		$\begin{array}{lll}7 & 5\end{array}$			15	JJ	1320 1229	2354	+.02 +.05
		543		+ 03	20	M	720	1816	- .06	17	$1 \mathrm{C}$	1229	- 6	+.05
	M	430	1520	+ 03	20		34	"	-.05	17		1320		$+\quad 01$ $+\quad .10$
		510		- 02	20		739	18 "	- 01	19	C	1320	- 52	+ +10 +.08
			$"$	-.03	21 21	AW	635 7 7	18 -	- 04 -.05	$\begin{aligned} & 19 \\ & 22 \end{aligned}$	JJ	$\begin{array}{ll}14 & 11 \\ 13 & 20\end{array}$		+ 08 $+\quad .04$ +
	RC	520	$16^{\prime \prime} 37$	+ 01	Sept. 7	RC	923	2014	-.05	22		1411	3	+ 06

Table VII－continued．

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Date． \& \[
\begin{aligned}
\& \dot{0} \\
\& 0 . \\
\& \stackrel{\rightharpoonup}{0} \\
\& 0 \\
\& \hline 0
\end{aligned}
\] \& S．T．of Day Obs． \& Mean
S．T．of Night Obs． \& Diff． Day－ Night． \& Date． \& \[
\begin{aligned}
\& \text { ⿷匚⿳山十⿴囗⿰丨丨⿹勹口 } \\
\& \text { 0} \\
\& 0 .
\end{aligned}
\] \& S．T．of Day Obs． \& Mean
S．T．of Night Obs． \& Diff． Day－ Night． \& Date． \& \(\dot{4}\)
\(\stackrel{4}{4}\)
0
0
0 \& S．T．o Day Obs． \& Mean S．T．of Night Obs． \& \[
\begin{aligned}
\& \text { Diff. } \\
\& \text { Day- } \\
\& \text { Night. }
\end{aligned}
\] \\
\hline \begin{tabular}{l}
1908. \\
Nov． 23 \\
23
23
\end{tabular} \& C \& \[
\left.\begin{array}{rr}
h \& m \\
13 \& 20 \\
13 \& 50 \\
14 \& 11
\end{array} \right\rvert\,
\] \& \[
\begin{array}{cc}
h \& m \\
0 \& 30
\end{array}
\] \& ＋0．04
+.03
+.01 \& 1909．
Feb．

7 \& M \& $\begin{array}{rr}h & m \\ 18 & 15 \\ 18 & 50 \\ 18 & 15\end{array}$ \& $\begin{array}{ll}\text { h } & \mathrm{m} \\ 5 & 56 \\ \mathrm{~S}^{\prime \prime} & \\ & 24\end{array}$ \& 5
-0.01
$-\quad .01$
$-\quad 13$ \& \& AW
JJ

AW \& | h \quad m |
| :--- | \& $\begin{array}{rr}h & m \\ 10 & 16 \\ 10 & 36 \\ 10 & 59\end{array}$ \& +0.04

$-\quad .12$
$+\quad .01$

\hline \multirow[t]{15}{*}{Dec． $\begin{array}{rr}1 \\ 3 \\ \\ 6 \\ 7 \\ 7 \\ 7 \\ 13 \\ 13 \\ 13 \\ 13 \\ 17 \\ 17 \\ 17 \\ 217 \\ & \\ 21 \\ 22\end{array}$} \& AW \& $16 \quad 0$ \& 135 \& －00 \& 9 \& C \& 1815 \& 547 \& － 07 \& 15 \& C \& 2253 \& 1014 \& －．04

\hline \& JW \& 14 II \& 219 \& ＋ 03 \& 9 \& \& 1850 \& ，＂ \& －．08 \& 15 \& \& 230 \& \& ＋ 04

\hline \& M \& 1411 \& 35 \& $\cdot 0$ \& 10 \& AW \& 1850 \& 547 \& －－02 \& 15 \& \& － 39 \& ＂ \& －．05

\hline \& C \& 1411 \& 334 \& － 01 \& 10 \& \& 1857 \& ， \& －．03 \& 18 \& AW \& － 8 \& 1054 \& ＋．06

\hline \& \& 1512 \& ＂ \& －${ }^{\circ} 3$ \& 10 \& \& 1942 \& \& －．04 \& 18 \& \& － 39 \& ＂ \& ＋－03

\hline \& C \& 1411 \& 314 \& － 04 \& 10 \& \& 1946 \& \& －．08 \& 19 \& JW \& 2253 \& 1049 \& － 16

\hline \& \& 1445 \& ， \& ＋－07 \& I I \& AP \& 1850 \& 6＊39 \& －00 \& 19 \& \& － 39 \& ， \& －－09

\hline \& \& $16 \quad 23$ \& ＂ \& － 03 \& 11 \& \& 1857 \& ， \& －＇09 \& 20 \& JJ \& － 39 \& 957 \& －00

\hline \& JW \& 1512 \& 233 \& 01 \& 11 \& \& 1946 \& \& ． 00 \& 21 \& AW \& 230 \& $10 \quad 19$ \& ＋ 02

\hline \& \& 1556 \& ， \& －．04 \& 14 \& AP \& 1946 \& 646 \& －．05 \& 21 \& \& － 9 \& \& －00

\hline \& \& $16 \quad 24$ \& ＂ \& － 03 \& 25 \& AW \& 1946 \& 645 \& ＋ 02 \& 21 \& \& － 39 \& ＂ \& － 02

\hline \& AP \& 1512 \& 254 \& －．08 \& 28 \& JJ \& 1946 \& 753 \& ＋．03 \& 23 \& C \& 2253 \& I I 44 \& － 02

\hline \& \& 1539 \& ＂ \& －16 \& Mar． 1 \& M \& 1942 \& 750 \& － 06 \& 23 \& \& 230 \& ， \& ＋．08

\hline \& JW \& 1512 \& 245 \& －．05 \& 1 \& \& 1946 \& ＂ \& － 03 \& 23 \& \& － 9 \& ＂ \& － 04

\hline \& \& 1623 \& ＂ \& －．03 \& 2 \& JW \& 1942 \& 74° \& － 06 \& 23 \& \& － 39 \& ＂ \& ＋ 02

\hline \& \& \& \& \& 2 \& \& 1946 \& \& －•07 \& 25 \& JJ \& － 9 \& 1122 \& － 10

\hline \multirow[t]{2}{*}{1909.
Jan．} \& \& \& \& \& 3 \& AP \& 1946 \& 727 \& $\cdot 12$ \& 25 \& \& \& \& ＋．05

\hline \& JJ \& 1624 \& 245 \& $+.05$ \& 4 \& AW \& 2016 \& 88 \& －． 01 \& 26 \& C \& － 8 \& 1128 \& －

\hline \& M \& 1624 \& 245 \& －．05 \& 4 \& \& 2127 \& ＂ \& ＋．04 \& May 2 \& JW \& － 8 \& $12 \quad 57$ \& ＋ 09

\hline 20 \& C \& 1739 \& 50 \& － 01 \& 4 \& \& 2140 \& ＂ \& －．06 \& 2 \& \& － 39 \& ＂ \& ＋．01

\hline 20 \& \& 1815 \& ＂ \& － 02 \& 8 \& AP \& 1946 \& 736 \& ＋ 01 \& 6 \& JJ \& － 39 \& 123 \& － 14

\hline 20 \& \& 1849 \& ＂ \& －．06 \& 8 \& \& 2127 \& ＂ \& ＋ 03 \& 6 \& \& 119 \& ＂ \& － 07

\hline 2 I \& M \& 1731 \& 50 \& －00 \& 8 \& \& 2140 \& ＂ \& － 12 \& 7 \& AP \& － 9 \& 123 \& －． 07

\hline 21 \& \& 1739 \& ＂ \& －．04 \& 9 \& JW \& 1942 \& 730 \& － 02 \& 7 \& \& $\bigcirc 15$ \& ＂ \& － 10

\hline 24 \& JJ \& 175 \& 514 \& ＋ 01 \& 9 \& \& 1946 \& \& － 02 \& 7 \& \& － 39 \& ＂ \& －－07

\hline 24 \& \& $17 \quad 39$ \& ＂ \& ＋．06 \& 15 \& AP \& 2127 \& 88 \& －．06 \& 9 \& RC \& － 39 \& 1235 \& ＋．01

\hline 25 \& RC \& 1739 \& 524 \& ＋．02 \& 15 \& \& 2140 \& \& ＋． 02 \& 10 \& AP \& － 9 \& 138 \& －00

\hline 25 \& \& 1850 \& \& －．05 \& 16 \& RC \& 2127 \& 834 \& －．06 \& 10 \& \& － 15 \& ＂ \& －．03

\hline 27 \& JW \& 1815 \& 452 \& － 01 \& 16 \& \& 2140 \& ＂ \& － 01 \& 10 \& \& － 39 \& ＂ \& － 10

\hline 27 \& \& 1857 \& ＂ \& －．10 \& 16 \& \& 2142 \& \& －．05 \& 10 \& \& 119 \& ＂ \& ＋．03

\hline 28 \& AW \& 1946 \& 414 \& －．07 \& 17 \& JW \& 2127 \& 826 \& －－01 \& 12 \& JJ \& －15 \& 125^{2} \& $+.07$

\hline 29 \& M \& 18 I 5 \& 539 \& －．05 \& 17 \& \& 2140 \& ， \& －． 04 \& 2 \& \& － 39 \& ＂ \& ＋．05

\hline 29 \& \& 1850 \& \& －．05 \& 18 \& JJ \& 2253 \& 730 \& －．03 \& 13 \& JW \& － 39 \& 1244 \& ＋ 03

\hline 31 \& JJ \& 1815 \& 6 1 \& － 05 \& 19 \& AW \& 2142 \& 730 \& － 01 \& 13 \& \& 119 \& ， \& ＋．01

\hline 31 \& \& 1850 \& ＂ \& ＋．00 \& 19 \& \& 2253 \& \& ＋． 04 \& 13 \& \& 149 \& ＂ \& ＋．03

\hline \multirow[t]{2}{*}{Feb．${ }^{31}$} \& \& 1857 \& \& ＋．04 \& 21 \& M \& 2253 \& 8.53 \& －． 10 \& 16 \& C \& － 9 \& 134 \& ＋．08

\hline \& C \& $18 \quad 15$ \& 65 \& － 02 \& 28 \& AP \& 2253 \& 911 \& －． 06 \& 6 \& \& $\bigcirc 15$ \& ＂ \& ． 02

\hline 1 \& \& 1850 \& \& －．07 \& 28 \& \& 230 \& \& － 12 \& 16 \& \& 119 \& ＂ \& ＋．04

\hline \multirow[t]{2}{*}{1} \& \& 1857 \& \& －．04 \& 29 \& J W \& 2253 \& 945 \& －． 05 \& 17 \& \& 510 \& ＂ \& ＋－01

\hline \& AP \& 1815 \& 550 \& － 10 \& 30 \& AW \& 2253 \& 945 \& －．07 \& 17 \& JJ \& － 39 \& 1320 \& ＋．01

\hline 2 \& \& $18 \quad 22$ \& ＂ \& －．08 \& \& \& 230 \& \& － 01 \& 18 \& \& 520 \& ＂ \& ＋ 07

\hline \& \& 1850 \& ， \& － 10 \& Apr． 4 \& 0 \& 2140 \& $10 \quad 12$ \& －00 \& 8 \& \& 532 \& ＂ \& ＋ 02

\hline 2 \& \& 1857 \& \& － 15 \& 4 \& \& 22 I \& \& －． 04 \& 28 \& C \& 532 \& 1323 \& ＋．03

\hline 3 \& \multirow[t]{4}{*}{AW} \& 1815 \& 60 \& － 01 \& 4 \& \& 230 \& ＂ \& ＋．04 \& 28 \& AP \& 119 \& 1254 \& ＋ 01

\hline 3 \& \& 1822 \& ＂， \& －．06 \& 5 \& AP \& 221 \& $10 \quad 12$ \& －．07 \& 28 \& \& 150 \& ， \& －．06

\hline 3 \& \& $\begin{array}{r}18 \\ 18 \\ 18 \\ \hline\end{array}$ \& ＂ \& \& 9 \& \& $\begin{array}{lll}22 & 53 \\ 22 & 53\end{array}$ \& 10＂16 \& － 111 \& June ${ }^{28}$ \& \& $\begin{array}{lr}2 & 2 \\ 6 & 17\end{array}$ \& \& ＋．06

\hline 3 \& \& 1856 \& \& －00 \& 9 \& AW \& 2253 \& 1016 \& －．05 \& June I \& RC \& 617 \& $14 \quad 18$ \& ＋．05

\hline
\end{tabular}

Table VII.-continued.

Date.	啇 荅	S.T. of Day Obs.	Mean S.T. of Night Obs.	Diff. DayNight.	Date.		S.T. of Day Obs.	Mear S.T. of Night Obs.	Diff. DayNight.	Date.		S.T. of Day Obs.	Mean S.T. of Night Obs.	Diff. Day- Night.
$\begin{aligned} & 1909 . \\ & \text { June } \end{aligned}$	RC	$\begin{array}{lll} \mathrm{h} & \mathrm{~m} \\ 6 & 4 & \end{array}$	$\begin{array}{rr}\text { h } & \mathrm{m} \\ 14 & 18\end{array}$	8 +0.05	1909.	JJ	$\begin{array}{cr}\text { h } & \text { m } \\ 7 & 35\end{array}$	$\begin{array}{cc}h & m \\ 18 & 32\end{array}$	8 +0.03	$\text { Oct. }_{1890}$	AP	$\begin{array}{cc}h & \mathrm{~m} \\ 5\end{array}$	$\begin{array}{cc}\text { h } & \mathrm{m} \\ 2 & 24\end{array}$	02
	C	53	1418	+ .09	- 12		8 8 4		+ .01	19	C	1512	2221	- 07
		510	"	+.04	5	C	735	1833	$+.03$	19		1555	"	+ ${ }^{-04}$
	JW	532	1355	+.02	16		1144		-00	19		1624		. 02
8		75	"	+.05	16	JJ	655	1920	+.01	20	RC	16 0	2217	- ${ }^{\circ} 03$
9	JW.	257	1358	+.02	16		735	,"	-.04	20		1624.		+ 01
10		632		-. 04	16		84	"	+.04	21	JJ	1540	$22 \quad 29$	00
10		641		+.03	19	C	1144	196	- . 02	21		I 555	,"	-. 04
10	C	430	1411	+.02	20	RC	1144	1851	-.04	21		160	"	+.04
11		619		- .08	20		125		-. 02	22	M	1555	2235	- .06
11		632	"	+.06	23	C	923	1813	+.03	22		160	"	-.03
18	JJ	257	140	- 01	24		1144	"	+.03	22	AP	1320	2233	+ 10
18		431	,	+ 01	24		125	, ${ }^{\text {a }}$	+.04	25	RC	1555	$20 \quad 54$	+ - 04
30	JJ	510	1541	+.03	25	J.J	125	1757	+ 03	25		$16 \quad 24$	"	+ 07
30		520	",	. 00	26	RC	1144	1915	+ -01	29	RC	1320	- 32	- 02
30		532	"	+.06	26		125	"	- 01	Nov. 1	M	1624	230	- 01
July 4	AP	510	1537	00	26		1211	"	+.01	1		$17 \quad 5$	"	- -09
4		520	,	-.03	27	AP	1211	191	+ -01	5	AW	1258	2331	+ .06
4		532	",	- 03	Sept. 1	AP	923	1923	+.02	5		1320		+ 10
5	C	520	1557	+.05			104	"	+ 04	7	AW	1230	2320	- 02
5		550	"	+ -09	2		1225	"	+ 04	7		1258	"	+ 01
6	JJ	4	1550	+.07	3	M	1225	1912	-00	7		1320	"	+ $\cdot 01$
6		53	"	+.05	3		12		+.07	8		1644	"	+.07
6		$5 \quad 10$,	+.08	9	C	12	1930	- 01	8		$17 \quad 5$	"	+ 04
6		520	"	+ 04	9		1314	"	+ 04	Dec. 8	JJ	1850	154	00
7	RC	53	1543	.00	13	JJ	1230	1944	+.03	8		1942	,"	+ .04
7		510	,	+.03	13		1314	"	+.05	8		1946	"	+ 02
7		520		+.07	13		1320	"	.00	13	M	1946	130	- $\cdot 09$
11	JW	510	1624	+.03	14	RC	1314	1944	+.05	14	AW	1942	145	- .06
11				+ .06			1320		+ 01	14		1946		+.04
16	AP	510	1652	+ .06	15	C	1230	2018	-. 04	15	JW	1946	157	- . 07
16		520	"	-00	15		1314	",	-. 04	16	RC	1942	222	- 12
16.		532	"	+.05	15		${ }^{1} 320$,	-.07	16		1946		- 05
16		$6 \quad 19$		-. 04	16	AP	1230	$20 \quad 52$	+.04	21	JJ	1946	235	- 05
18	JJ	619	1638	+.05	16		1314		- 02	21		2016		- 01
18		632	",	+.05	6		1320	"	- 03					
19		104	"	+ 09	17	JJ	1314	207	+.07	1910.				
20	JJ	510	1550	+ .06	17		1320	"	+.03	Jan. 6	JJ	1555	451	- 02
20		532	"	- 02	21	JJ	1314	2013	+ 01	6		1624		+ 02
20		544	"	+ ${ }^{-02}$	21		1320	"	+ 03	6		1632	,"	- 01
22	RC	532	1711	+.05	27	C	1144	2135	+ 02	6		1644		+ 11
22		619	"	+ 02	28		1320	"	-.04	9	JJ	1555	422	-.04
22		641		- 01	28		1412	"	+.03	9		1624	",	-. 04
30	RC	544	1745	+.03	Oct.	AP	104	2042	+ 12	9		175		+ 01
30		550	"	+.08	1		119	"	-00	10	J W	1555	351	$\cdot 1$
Aug. 2	C	520	1734	+.04	8	C	1320	2129	-.07	0		1624	3	. 04
2		532		+ .06	8		1446		. 02	10		1632		-. 07
- 2		544	"	+.07	8		$15 \quad 12$	"	-.04	10		1644		+ 03
- 3		104		+ 02	18	AP	1446	$22 \quad 24$	- .09	11	M	1731	353	- 22
11	AP	735	1842	+.04	18		$15 \quad 12$	"	-. 06	13	AP	1624	45	+.03

Table VII.-continued.

Table VII.-continued.

Date.		$\begin{aligned} & \text { S.T. of } \\ & \text { Day } \\ & \text { Obs. } \end{aligned}$	$\begin{aligned} & \text { Mean } \\ & \text { S.T. of } \\ & \text { Night } \\ & \text { Obs. } \end{aligned}$	$\begin{gathered} \text { Diff. } \\ \text { Day- } \\ \text { Night. } \end{gathered}$	Date.	$\dot{8}$ 商 0	$\begin{aligned} & \text { S.T. of } \\ & \text { Day } \\ & \text { Obs. } \end{aligned}$	$\begin{aligned} & \text { Mean } \\ & \text { S.T. of } \\ & \text { Night } \\ & \text { Obs. } \end{aligned}$	$\begin{aligned} & \text { Diff. } \\ & \begin{array}{l} \text { Day } \\ \text { Night. } \end{array} \end{aligned}$	Date.		$\begin{aligned} & \text { S.T. of } \\ & \text { Day } \\ & \text { Ous. } \end{aligned}$	$\begin{aligned} & \text { Mean } \\ & \text { S.T. of } \\ & \text { Night } \\ & \text { Obs. } \end{aligned}$	$\begin{aligned} & \text { Diff. } \\ & \text { Day- } \\ & \text { Night. } \end{aligned}$
		h m	h m	+0.10	${ }^{1910}{ }^{19}$			14^{8}	$0 \cdot 00$	1911.		h 18 18 15		+0.02
July 25	AP	$\begin{array}{lll}5 & 10 \\ 5 & 20\end{array}$	19	+0.10 $+\quad 11$	Sept. 21	JW	$\begin{array}{rr}9 & 23 \\ 10 & 4\end{array}$	14^{8}	$\begin{array}{r}0.00 \\ -\quad .05 \\ \hline\end{array}$	Jan. 25 25	JJ	$\begin{array}{lll}18 & 15 \\ 18 & 22 \\ 21\end{array}$	434	+0.02 $+\quad .01$ $+\quad 01$
		520 529	',	$+\quad 11$ $+\quad .05$		RC	$\begin{array}{rrr}10 & 4 \\ 9 & 23\end{array}$	$3^{\prime \prime} 6$	- 0.05 $+\quad .04$			18 182 21 18	"	$\begin{array}{r}\text { a } \\ +01 \\ \hline-01\end{array}$
		543		+ 07	28		119		-00	30	AW	1815	547	+ 03
		550		+ 07	29	M	104	33	+.04	30		1822		-.07
	RC	520	123	+ 11	29		119		- 02	30		1946		-.08
		529	"	+.07	30	AP	104	$3{ }^{3}$	+.06	31	RC	1815	59	- 03
26		619	"	+ 05	Oct.	AW	10	39	+ ${ }^{1} 1$	31		1822		- .08
31	AW	550	2120	+ 09	3		119		+.03	Feb.	M	1822	515	
31		619	,	+ $0+$	10	M	104	3^{8}	- 02			1850		$\cdot 0$
31		632		+-05	10		1144		- 05	3	JJ	1850	18	-.07
Aug. 1	RC	543	2030	+ 03	18	C	1144	217	+ 02	3		1946		- .06
		655	",	+ 03	21	JW	125	40	- 01	7	AW	2253	627	- 03
1		74		+ 05	21		1211		02	7		2259		+.07
5	AP	543	1948	+ 09	23	JW	125	258	+ 01	8	M	2253	544	
		55°		+ 11	23		1211		+.06	8	JJ	194	542	
5		619		+ 0.09	24	AW	1211	255	+ 02	9		2253		11
		7		+ .05	26	RC	125	344	+ 11	9	RC	1850	542	-.04
16	C	655	2154	$+\quad 04$ $+\quad .01$ $+\quad .05$	Nov. $\begin{array}{r}26 \\ \end{array}$		$\begin{array}{ll}13 & 20 \\ 12 & 29 \\ 13\end{array}$		+.08 +.06	$\begin{aligned} & 9 \\ & 9 \end{aligned}$		18 19 19 4^{4}		- 03 $+\quad .04$
16		745		+ 05	- 3		1320		- 05	16	AP	1850	$6{ }^{\prime \prime} 51$	$+\quad .4$ -.03
17	AP	655	2155	+ 03	8	JW	1230	151	+ 07	16		1946	,	+ 07
17		75	"	+ 04	8		1320		+ 02	17		2253		- 03
19	M	8	2152	. 00	13	JW	1320	216	-. 04	19	AW	1942	745	-. 04
23	M	125	236	+ 02	13		14111		+ 04	19		1946		- 08
23		1211	"	--03	14	C	1320	219	+ 02	20	AP	1946		+ 01
Sept.	AW	84	223	+ .08	14		1411		+ 04	20		2016		- 01
1		923	"	+ 05	16	AW	1320	324	+ 03	24	C	1942	7	-.05
2		1211		+ 05	16		1411			24		1946		-.04
2	M	8	223	-.07	23	-	1411	246	-.01	27	JJ	1942	739	+ 09
2		941		- 01	27.	JW	1320	420	-.02	27		1946	"	+.03
7	AW	923	2313	+ 08	28	AP	1320	420	+.06	27				+.03
7		104		+.01	28		1411		+.02	27		2016		+.08
8	JW	923	2325	-.08	29	RC	1411	127	+ 09	Mar. 1	AW	1942	742	-.06
9	AP	84	2041	+ 01	29		1446		+ 12	1		1946		- . 07
9		851	"	$+.02$	Dec. 9	C	1624	230	+.07	1		1951		- 01
9		923	"	+ ${ }^{\circ} 3$	11	AP	1411	127	+.06	1		1955	"	- 03
11	AP	851	2246	+ 04	11		1446		+.04	1		207	"	-.06
11		923	,	+ 06	11		1624		+ 12	1		2016		+ ${ }^{\circ} \mathrm{O}$
11		104		+ 06						${ }^{2}$	S	1946	735	- 14
12	AW	923	2245	+.03	1911.					Apr.	RC	2142	829	-00
12		104	"	+ 11	Jan. 17	JJ		350	+ 05			$22 \quad 1$		+ 02
13		1258	"	+ 16	17		$\begin{array}{ll}18 & 49 \\ 17\end{array}$		-00	6	C	2253	754	- 10
13		1320		+ 09	22	AP	1731	543	+ 09	7		258		- - 05
16	C	923	2128	+.06	22		17 17 18		+ 01	10	JJ	2253	752	-.06
16		104		+.06	23	AW	18 18 18 18	539		11		258		+.03
18	C	923	2318	+ 01	23		1822	,	$\cdot 00$	11	C	2253	758	-.03
18		104		+.01	23		1850		+.04	12		258		-.03
19	AP	923	2240	+ 01	24		2140		-.04	24	AW	431	817	+.07
19		10	"	$\bigcirc 2$	25	M	2140	453	- 10	28	C	- 39	957	-.04

C. F. C., 1900 .

Table VII.-continued.

Date.		S.T. of Day Obs.	Mean S.T. of Night Obs.	Diff. DayNight.	Date.		$\left\lvert\, \begin{gathered} \text { S.T. of } \\ \text { Day } \\ \text { Obs. } \end{gathered}\right.$	Mean S.T. of Night Obs.	Diff. DayNight.	Date.		$\begin{aligned} & \text { S.T. of } \\ & \text { Day } \\ & \text { Obs. } \end{aligned}$	Mean S.T. of Night Obs.	Diti: Day- Night.
$\text { May }^{\text {rir. }} 4$	C	$\begin{array}{ll} \text { h } \quad \text { m } \\ 0 & 39 \end{array}$	$\begin{array}{rr}h & m \\ 12 & 6\end{array}$	+0.01	1911. June 28		$\begin{array}{ll}\text { h } & \mathrm{m} \\ 8 & 4\end{array}$	$\begin{array}{rr} h & \mathrm{~m} \\ 12 & 41 \end{array}$	\bigcirc	Aug. 30		$\begin{array}{rrr}\mathrm{h} & \mathrm{m} \\ 12 & 11\end{array}$	$\begin{array}{rr} h & m \\ 20 & 6 \end{array}$	$0 \cdot 00$
		431	' ${ }^{\prime}$	+.05	28	C	510	$15 \quad 12$	+ 01	30	M	721	18 I6	+ 09
	. JJ	- 39	91	-.09	28		520	"	+ .08	30		74°	,	$+.05$
		- 9	114^{8}	$+.07$	29		740		+.05	30		84		+ 04
8		150	"	+ 11	29	AW	544	1453	+.01	31	AW	923	1933	+ 07
8		22		+ 13	29		550	"	$+.05$	31		104		+ 17
9		532	"	$+.05$	30		923		+.03	Sept. 5	AW	104	$18 \quad 59$	-.03
10	M	510	1154	+.06	July 2	S	544	$12 \quad 54$	+.09		AW	923	1842	. 00
\bigcirc		520	,"	+.04			550		+ 10	6		104		+.06
10		527	",	$+.04$	3	AW	619	1529	+.02	8	C	821	2025	+.04
11	JJ	510	1027	+.03	4		923		+.03	8		923		00
11		520	"	+ .03	4		104		+.05	12	AW	923	1916	+ .09
11		527	"	- . 02	7	JJ	923	1533	+ 02	12		104	"	+.08
1		531	"	+ 01	7		104	,	+ .04	19	RC	104	2010	+ 10
12	RC	520	912	0	7	C	510	1329	+ -01	28	C	II 10	2034	00
12		527		-.04	7		520		+.01	29	JJ	10, 4	1957	+ 05
16	AW	510	921	+ 0.4	10	C	923	1310	+ 10	Oct. 2	M	104	2047	+.07
16		520	"	+ 02	10		104		+ 12	2		1110	,"	+.04
16		544	"	+ .06	17	AP	923	$15 \quad 57$	+ 02	2		1145	"	+.03
16		550	"	+.06	17		104		-.04	4	RC	1145	1953	+ .09
21	AP	$2 ; 8$	2144	+.04	18	JJ	923	160	- 01	6	AW	1110	210	+.04
22		510	,"	+ .08	18		104	",	+ 01	6		1211		+.05
22		520	"	+ 12	19	RC	923	1549	- 02	19	JJ	1211	2144	+ 02
22		543	"	+ 10	19		104		- 01	20	M	II 45	2137	+.02
22		550	"	+ 10	27.	AP		$16 \quad 29$	+ 13	20		1225	"	+.04
22	C	258	2152	+.05	27		619	"	+ 04	24	C	1321	2219	- 02
23		510	,"	- . 02	27		632		+ .13	25	JJ	1145	2212	-.06
23		520	"	1	31	S	104	1542	+-03	31	S	II 45	$23 \begin{array}{ll}23 & 9\end{array}$	- . 16
26	M	$2 \quad 2$	2152	-.03	31		1119		+.03	av. 8	RC	1145	233	O
26		25^{8}	,"	00	Aug. 8	AW	1045	1650	. 00	8		12 II		+.01
June	M		2147	-. 01	8		119	,	+.08		C	1211	131	+.05
I		633	,"	+.03	8		1115		-.05	13		1320		-00
		655	"	+ . 04	8		1129		-.03	14	AP	1320	131	$+.06$
1		$7 \quad 5$	"	+ 01	13	M	633	1639	+.07	14		1412		+ 12
15	JJ	431	\bigcirc	+.04	13		655		+ 07	16	JJ	1258	420	+.08
18	AP	431	1453	+.02	13		75	"	+ 14	6		1320		+.05
20	C	431	1419	+.02	18.	RC	1129	1741	+.04	17	RC	1314	432	+.04
20		510	",	+ 01	21	AW	923	1758	-.01	17		1321		-.01
21		740		+.06	22		1145		+.06	20	RC	1314	449	-.08
26	JJ	84	144^{0}	+.01	25	C	740	$17 \quad 29$	+.04	20		1321		-.08
26		8 12	"	-.03	25		74^{6}		+.03	22	AW	1258	115	+ .06
26		923		+ 02	25		84		+.05	22		1314		+ 03
27	AP	431	124^{1}	+.07	28	RC	126	$17 \quad 12$	-.02	2		1321		+ .02
27		510		+ 13	28		1211		-.08	26	JJ	1321	14^{8}	+ 01
28		74^{0}		+ -19	29	JJ	923	206	- .02	26		13 51	"	+ 05

The periodic character of the differences Day-Night is at once evident from inspection of this table. In order, however, to subject it to a closer analysis it has been assumed that it is primarily due to a periodic error in the clock-star system used, which may be expressed analytically by the formula

This has further been regarded as possibly associated with a diurnal periodicity, either due to different habits of the observers in daylight observing as contrasted with night observing, or to a diurnal change in the conditions of the transit circle or a diurnal period in the clock rate. Thus each of the differences Day-Night has been equated to an expression of the form

$$
K+A_{1}\left(\cos a_{1}-\cos \alpha_{2}\right)+B_{1}\left(\sin a_{1}-\sin \alpha_{2}\right)+A_{2}\left(\cos 2 a_{1}-\cos 2 a_{2}\right)+B_{2}\left(\sin 2 a_{1}-\sin 2 a_{2}\right),
$$

where a_{1} denotes the R.A. of the day star and a_{2} the mean R.A. of the night stars on which the comparison depends. The quantities α_{1}, α_{2} are given under the headings S.T. (sidereal time) of Day Observations and Mean S.T. of Night Observations in columns 3 and 4 of Table VII. While the quantities $A_{1}, B_{1}, A_{2}, B_{2}$ have been regarded as constant throughout the series of obserrations, the quantity K has been considered as possibly variable with the observer or the method of observing. We give in Table VIII. partial normal equations obtained by grouping the observations according to the observer and the year of observation and combining the separate equations with equal weight.

Table VIII.-Partial Normals for the Determination of Periodic Errors in Right Ascension.

Observer C.

Thable VIII.-continued.
Observer AP.

				v.	$v . '$
30 K	$-{ }_{44}{ }^{3} A_{1}$	1908. $\begin{array}{cc} +36 B_{1} & - \\ +14 & -11 A_{2} \\ 67 & -16 \\ & 9 \end{array}$	$\begin{aligned} -8 B_{2} & =-0.13 \\ -14 & =+0.44 \\ -19 & =+0.82 \\ -19 & =-0.18 \\ +8 & =-0.42 \end{aligned}$	$\begin{array}{r} s \\ -\quad 0.48 \\ +\quad 0.47 \\ +\quad 0.16 \\ -\quad 0.03 \\ -\quad 0.27 \\ \hline \end{array}$	$\begin{array}{r} 8 \\ -\quad 0.09 \\ +\quad 0.07 \\ +\quad 0.02 \\ -\quad 0.01 \\ -\quad 0.07 \\ \hline \end{array}$
$49 K$	+ $20 A_{1}$ 92	$\begin{array}{ll} -4 B_{3} & +10 A_{2} \\ -15 & -4 \\ 88 & - \\ & 16 \end{array}$	$\begin{aligned} +\quad 5 B_{2} & =-1.38 \\ -22 & =-2.23 \\ +1 & =+1.89 \\ +3 & =-0.15 \\ 19 & =+0.19 \end{aligned}$	$\begin{array}{r} -\quad 0.56 \\ -\quad 1.06 \\ +\quad 0.37 \\ +\quad 0.55 \\ +\quad 0.06 \\ \hline \end{array}$	$\begin{aligned} & -0.08 \\ & -0.11 \\ & +0.04 \\ & +0.04 \\ & +\quad 0.01 \end{aligned}$
$47 K$	$-34 A_{1}$ -59	$\begin{array}{cc} & 1910 . \\ + & 17 B_{1} \\ - & -12 \\ 79 & - \\ & - \\ & \\ & 79 \\ & 71 \end{array}$	$\begin{aligned} +9 B_{2} & =+1.40 \\ +4 & =-1.82 \\ +22 & =+2.13 \\ -14 & =-1.96 \\ 25 & =+0.70 \end{aligned}$	$\begin{array}{r} +1.04 \\ -1.55 \\ +\quad 0.72 \\ -1.12 \\ +\quad 0.27 \\ \hline \end{array}$	$\begin{array}{r} +\quad 0.15 \\ -\quad 0.20 \\ +\quad 0.08 \\ -\quad 0.13 \\ +\quad 0.05 \\ \hline \end{array}$
$24 K$	$\mathrm{ta}_{17}^{1} A_{1}$	$\begin{array}{ll} +8 B B_{1} & -11 A_{2} \\ +\quad 5 & - \\ 58 & - \\ & 25 \end{array}$	$\begin{aligned} +3 B_{2} & =+1.42 \\ -1 & =-0.14 \\ +7 & =+1.31 \\ -12 & =-1.37 \\ 21 & =+0.24 \end{aligned}$	$\begin{array}{r} 0.00 \\ -\quad 0.15 \\ -\quad 0.17 \\ -\quad 0.24 \\ -\quad 0.15 \end{array}$	$\begin{array}{r} 0.00 \\ -\quad 0.04 \\ -\quad 0.02 \\ -\quad 0.05 \\ -\quad 0.03 \\ \hline \end{array}$

Observer RC.

Table VIII.-continucd.
Observer AW.

Observer M.

Table VIII.-continued.
Observer JJ.

Observer JW.

Table VIII--continued.
Observer S.

For the further combination of these equations the observations in the different years were first treated independently. By means of the normal in K, the quantity K was first eliminated, and reduced partial normals in $A_{1}, B_{1}, A_{2}, B_{2}$ were derived. The reduced partial normals for the separate observers were then combined by addition and the resulting complete normals solved. The results for the separate years are as follows :-

Table IX.-Coefficients of Periodic Errors in the Clock-Star System.

	${ }_{4}$.	B_{1}	A_{*}	B_{2}
$\begin{aligned} & 1908 \\ & 1999 \\ & 19010 \\ & 1910 \end{aligned}$	$\begin{array}{r} \mathrm{s} \\ -0.0057 \\ +.0020 \\ \hline-.0049 \\ -.0090 \end{array}$	$\begin{aligned} & 8 \\ & +0.0122 \\ & +0.0177 \\ & +.0 .165 \\ & +0.122 \end{aligned}$		$\begin{aligned} & \text { s.0.046 } \\ & +0.047 \\ & +0.0010 \\ & \pm-0.006 \end{aligned}$

The observations made by each observer during the years 1908-10 were next regarded as furnishing homogeneous groups, which were combined among themselves in like manner, those of 1911 however being excluded, as a different method of observing was used in this year. The results from the separate groups are as follows :-

Table IXa.-Coefficients of Periodic Errors in Clock-Star System (1908-10) grouped according to Observers.

According to either method of grouping, the values of the quantities A_{1}, B_{1}, A_{2}, B_{2} appear to be persistent, indicating real periodic errors in the Cape Ledger system. The definitive values have been derived by combining by addition all the reduced partial normals $A_{1}, B_{1}, A_{2}, B_{2}$, which result after the elimination of K from each homogeneous group. The final complete normals are as follows:-

$$
\begin{array}{r}
1275 A_{1}-18 B_{1}-194 A_{2}-168 B_{2}=-9.08 \\
-18 A_{1}+1498 B_{1}-92 A_{2}-27 B_{2}=+23.29 \\
-194 A_{1}-92 B_{1}+781 A_{2}+12 B_{2}=-778 \\
-168 A_{1}-27 B_{1}+12 A_{2}+686 B_{2}=+1.33
\end{array}
$$

with the solution

$$
\begin{array}{lll}
A_{1}=-0.0085, & \text { weight } & 1183, \\
B_{1}=+0.0148, & \text { I } & 1866, \\
A_{2}=-0.0103, & " & 741, \\
B_{2}=+0.0006, & " & 663 .
\end{array}
$$

If we substitute these values in the respective partial normals in K, we derive the following values for K, which represent the personal discordances in time determinations by day as compared with those of the mean observer by night.

Table X.-Discordances between Day and Night Determinations of Clock Error (in sense Day-Night), grouped according to Observers.

Day Observer.	Year of Observation.				
	1908.	1909.	1910.	1908-10.	191.
C	$+0^{9.005}$	0.000	$\begin{aligned} & s \\ & +0.004 \end{aligned}$	$\begin{gathered} \mathrm{s} \\ +0.002 \end{gathered}$	$\begin{aligned} & \text { s. } \\ & 0.000 \end{aligned}$
AP	-.026	- 021	+ 012	- 010	+.050
RC	-.007	- 002	+017	+.005	+.004
AW	+ 004	+.018	+ .033	+ 020	$+.021$
M	-.019	-.023	-.024	- 022	+.014
JJ	a $+\quad .012$ $-\quad .008$	a $+\quad .009$ $-\quad .009$	a $+\quad .023$ -.012	a $+\quad .012$ $-\quad 010$	$+\ldots{ }^{-013}$
S					- $\quad 024$
Mean	-.0056	-. 0040	+.0076	-.0004	$+.0110$

The quantities here derived, except in so far as they are due to purely accidental causes, may be attributed in part to personal and partly to instrumental causes. If we give equal weight to the determinations in each of the four years involved, the mean result derived from all the observations amounts only to $+0 \cdot 80023$ for the mean observer. It follows that there can be little or no danger of the determinations of the periodic errors in R.A. being vitiated by periodic errors due to diurnal changes in the instrument or the clock.

The quantities contained in the two final columns of Table X. have been adopted as definitive, and, together with the finally derived values of $A_{1}, B_{1}, A_{2}, B_{2}$, have been surbstituted in the original equations of condition. From the sum of the squares of the residuals thus formed the probable accidental error corresponding to weight unity has been derived as $\pm 0^{8 .} 031$; whence, with the weights derived, the probable accidental errors of $A_{1}, B_{1}, A_{2}, B_{2}$, amount to $\pm 0^{s .0009}, \pm 0^{8.0008}, \pm 0^{8.0011}, \pm 0^{s .0012 . ~ T h e ~}$ agreement between the derived values of these same quantities from the groups of observations, either arranged according to time or according to the observers, does not confirm this high estimate of the precision, doubtless on account of cumulative systematic errors. To obtain a more reliable estimate of the probable errors, both accidental and systematic, of the results, the derived values have been substituted in the partial normals (Table VIII.) ; the residuals are given in the last column but one of this Table. Now it is evident that if any one of these partial normals be written in the symbolical form

$$
(a a) x+(a b) y+(a c) z+\ldots=(a n)
$$

where each of the quantities n is of weight unity, the square of the mean error of the absolute term will be $(\alpha a) \epsilon^{2}, \varepsilon$ denoting the mean error corresponding to unit weight.

Hence we may reduce the equations to equal weight unity by multiplying by the factor $1 / \sqrt{ }(\alpha \alpha)$. The final column in Table VIII. gives the residuals from the equations thus reduced.

Now if the quantities thus obtained represented true errors, instead of residual phenomena, since each has the same weight unity, the mean of their squares would give a determination of the square of the mean crror for unit weight, but in that the derived phenomena depend on the equations themselves, we may anticipate that the average residual will be less than the average error.

On the other hand, the sum of the squares of the residuals will exceed that which would be derived from a least square combination of the partial normal equations regarded as equations of condition. But, according to the usual conventions of least squares, if Σv^{2} denote the sum of the squares of the residuals, m the number of equations, and n the number of unknown quantities,

$$
m \epsilon^{2}=\Sigma \boldsymbol{v}^{2}+n \epsilon^{2}
$$

Hence if v^{\prime} denote residuals from a solution other than a least square solution,

$$
m \epsilon^{2}<\Sigma v^{\prime 2}+n \epsilon^{2}
$$

Applying this formula to the present case, a superior limit to the probable error corresponding to unit weight is found to be $\pm 0^{8 .} 043$ and the corresponding probable errors of A_{1}, B_{1} do not exceed $\pm 0^{s .0013, ~ t h o s e ~ o f ~} A_{2}, B_{2}, \pm 0^{s} 0018$.
C. F. C., 1900 .

On the basis of this determination the probable error, inclusive of residual systematic error, as well as purely accidental error of the quantity

$$
A_{1} \cos \alpha+B_{1} \sin a+A_{2} \cos 2 a+B_{2} \sin 2 a,
$$

amounts at a maximum in any right ascension to $\pm 0^{8.0022}$.
As regards the actual values derived for the coefficients $A_{1}, B_{1}, A_{2}, B_{2}$, confirmation has been sought from comparison with approximately simultaneous series of observations made in other observatories, with results that support the values here derived (see Monthly Notices, January 1913). For the purposes of the present Catalogue it has, however, been thought desirable, in order to maintain its fundamental character, to avoid the introduction of extraneous evidence.

Thus the definitive corrections which have been applied to the Ledger right ascensions in order to eliminate the errors in the system of right ascension originally adopted for their formation are
$\Delta \alpha=+0.0085 \cos a-0^{5.0148} \sin \alpha+0^{8.0103} \cos 2 a-0^{8.0006} \sin 2 a$.
For reasons which will be discussed later no constant correction has been applied. Thus the equinox of reference corresponds with that of Newcomb's Catalogue.

II.-Revision of Declination System.

The declinations in the Ledgers have been derived from the nadir readings, with the Pulkowa refractions and with an assumed value for the mean latitude of the transit circle, viz. :-

$$
-33^{\circ} \quad 56^{\prime} \quad 2^{\prime \prime} \cdot 5
$$

Except for the year 1911, they have received corrections on account of the motion of the Earth's axis from data supplied by Albrecht from the latitude determinations at the International Geodetic Stations. The same applies to the time stars of 1911, but not to the circumpolar stars, the observations of which are contained in a separate ledger, and which have formed the subject of a special discussion (Cape Annals, vol. xi., part iii.). No corrections for instrumental flexure have been applied prior to the formation of the Ledgers.

Before considering the corrections on account of latitude and flexure, a comparison was first made between the results derived in the four conditions of the instrument I. E., I. W., II. E., II. W. A summary of this comparison, based on observations during the years $1905-10$, is given in the following tables.

Table XI.-Comparison of Declinations with opposite positions of the Clamp.
Position I. $\quad \Delta \delta(\mathrm{E}-\mathrm{W})$.

Mean Dec.	$0^{\text {b }}-4^{\text {b }}$.	$4^{\text {b }}-8^{\text {b }}$.	$8^{\text {h }}-12^{\text {h }}$.	$12^{\text {b }}-16^{\text {b }}$.	$16^{6}-20^{\text {b }}$.	$20^{\text {b }}-0^{\text {b }}$.	Mean.
$+27$	$+0.1734$	$+0.47_{27}$	$+0 \because 1518$	-0.02_{19}	+ 0.111_{31}	$+0.12425$	$+\ddot{196154}$
+ 15	+ 0.26_{16}^{34}	+0.3921	$+0.30_{22}$ +	+0.1119	+ 0.16_{20}^{31}	+ $0.38{ }^{25}$	+0.267110
$+5$	+0.3727	$+0.4817$	+0.3225	-0.0111	+ 0.2918	+ 0.36_{18}	+0.325116
- 5	+0.4316	+0.5019	+0.2413	-0.011_{17}	$+0.06_{12}$	+0.4324	$+0.300101$
- 15	$+0.3810$	+0.4315	+0.3211	$+0.162$	+ 0.2613	+0.3420	+0.303 ${ }^{1}$
- 25	$+0.3516$	+0.5519	+0.539	$+0.1715$	$+0.2724$	+0.4619	$+0.378102$
- 35	$+0.2713$	$+0.37_{16}$	+0.3310	$+0.2214$	+ 0.2816	$+0.3014$	+0.29583
- 45	+0.3426	$+0.5724$	+0.5127	$+0.2431$	$+0.3128$	$+0.4818$	+0.396154
- 55	$+0.2513$	+0.5216	$+0.3719$	+0.3914	+0.4912	$+0.30_{14}$	+ 0.38888
-65	$+0.4613$	$+0.657$	$+0.36_{12}$	$+0.367$	$+0.5710$	$+0.51{ }_{12}$	+0.47961
-75	+0.4011	$+0.60$	+0.458	$+0.168$	-0.026	+0.47 7	+0.364 49
-85	$+0.30_{4}$	+ 0.495	$+0.53{ }^{+}$	$+0.434$	$+0.074$	$+0.344$	+0.35924
-95	$+0.104$	$+0.493$	+0.35 4	$+0.074$	-0.07 5	$0 \cdot 0{ }_{2}$	+0.14522
-105	+ 0.62	$+0.692$	$+1.00{ }_{2}$	$+0.40{ }_{5}$	+0.37	+0.53	+0.578 ${ }_{19}$

Position II. , $\Delta \delta(\mathrm{E}-\mathrm{W})$.

+ 27	$+0.4834$	+0.4527	$+0.1918$	+0.1219	+0.1731	$+0.21{ }_{25}$	+0.291154
+15	+0.6516	+0.5321	+0.3322	+0.2717	+0.2420	+0.2414	+0.378110
+ 5	$+0.5227$	+0.2717	+0.4325	$+0.3011$	+ 0.4018	+0.5119	+0.424117
-	$+0.63_{16}$	+0.3920	+0.4413	$+0.20_{17}$	+0.3912	$+0.3724$	$+0.398_{102}$
- 15	$+0.4910$	+0.4414	+0.3911	$+0.33_{22}$	$+0.47{ }_{13}$	$+0.46_{20}$	+0.42190
- 25	+0.6216	$+0.3819$	+0.419	$+0.36_{15}$	+0.4524	$+0.62_{18}$	+0.477 101
- 35	$+0.43{ }^{13}$	+0.4916	$+0.3410$	$+0.3314$	+0.3716	$+0.4715$	+ 0.41084
- 45	+ 0.40_{26}	+0.5224	$+0.2227$	+ $0.31{ }^{1}$	+0.3328	+0.3117	+0.346153
- 55	$+0.52_{13}$	+0.3416	$+0.2319$	+0.1914	$+{ }^{\circ} 2.2912$	$+0.30_{14}$	$+0.30688$
- 65	+0.3313	+0.217	$+0.31_{12}$	$+0.267$	+0.1710	+0.3312	$+0.27861$
-75 -85	$+0.39_{11}$ +0.44	+0.329 +0.28	+ 0.068 $+0.19^{8}$	+0.198 +0.35	+0.236 -0.14	+0.16 +0.17	+0.21949 $+0.23+23$
-85 -95	+0.444 +0.64	+0.285 +0.055	+0.193 +0.203	+0.354 +0.19	+ 0.143 +0.193	+0.174 +0.10	+0.219 $+0.23+23$
-95 -105	+0.644 +0.48	+0.053 +0.853	+0.203 +0.24	+0.194 +0.35	+0.193 +0.39	$+0.10{ }_{3}$	$+0.24720$
-105	+0.485	+0.852	+0.242	+0.35	+0.39 1	$+0.023$	$+0.37718$

Comparison of Declinations with reversed positions of Object Glass and Eye-End.
$\Delta \delta$ (Position I.-Position II. ; mean of E and W.)

+ 27	-0.13_{34}	-0.1427	-0.3118	-0.2919	$-0.37{ }_{31}$	-0.2225	-0.235154
$+15$	-0.1816	-0.2421	-0.2322	$-0.28{ }_{17}$	-0.3120	-0.2415	-0.250 111
+ 5	-0.10_{27}	+0.0217	$-0.08{ }_{25}$	$0.00{ }^{11}$	-0.0618	-0.1518	-0.070_{116}
- 5	-0.03_{16}	$+0.0520$	-0.0113	$-0.08{ }_{17}$	+0.0112	-0.0723	-0.024iol
- 15	-0.16_{10}	$+0.06_{14}$	$+0.01_{11}$	-0.0122	-0.011_{13}	-0.0720	-0.02790
- 25.	$+0.1216$	+0.1319	$+0.069$	$+0.10_{15}$	$+0.08{ }_{24}$	-0.0119	$+0.080_{102}$
- 35	$+0.0613$	$+0.10_{16}$	$+0.0210$	$+0.2614$	$+0.1916$	$0 \cdot 0014$	+0.11383
- 45	$+0.10_{26}$	+0.1424	$+0.10{ }_{27}$	$+0.10_{31}$	$+0.2128$	$+0.0119$	+0.112155
	$+0.2113$	+0.2216	+0.1319	$+0.2414$	+0.1512	$+0.1713$	$+0.18587$
-65	$+0.20_{13}$	$+0.27$	+0.1812	+0.27 7	+0.3210	$+0.10_{12}$	+ 0.21261
	$+0.26{ }_{11}$	$+0.209$	+0.148	-0.068	$+0.176$	+0.20,	+0.158 ${ }_{49}$
-85	+0.334	+0.46	+0.293	$+0.404$	$+0.233$	$+0.18$	+0.320 24
-95	+0.144	+0.10	+0.463	+0.374	$+0.213$	$+0.20{ }^{2}$	+0.250 19
- 105	$+0.75$	$+0.28$	$+0.22$	$+0.275$	$+0.011$	$+0.323$	+0.39418

The suffixes indicate the number of stars in the group.

Fairly pronounced discordances of a systematic character depending on the zenith distance are clearly indicated. These may be in part accounted for by residual division-errors and by the variations in flexure under the different conditions. The separate determinations of the flexure coefficient by means of the horizontal collimators are given in the Introduction to the Meridian Observations. A summary of these is here given :-

Thabe XII.-Determinations of Mean Flexure Coefficient.

	I.		11.	
.	E.	W.	E.	W.
1905	"	...	+ $0^{\prime \prime} 288$	+ $\because \because 363$
1906	$+0.253$	$+0.310$...	-
1907	$+0.459$	+0.335	+...	\cdots
1908			+0.213	$+0.137$
1909	$+0.271$	$+0.323$		+ $\quad 06$
1910	$+0.305$	$+0.384$	$+0.061$	$+0.068$
1911	$+0.298$	$+0.384$...	
Mean	$+0.317$	$+0.347$	$+0.187$	$+0.189$

Within the limits of accidental errors of determination these figures indicate no appreciable change due to reversal between the two clamps, but a strongly marked difference between determinations in Positions I. and II. Accordingly the differences $\mathrm{E}-\mathrm{W}$, as given above in Table XI., after being smoothed by graphical interpolation, have been adopted as definitive.

To the difference II-I a correction on account of variation in the flexure coefficient, amounting to $-0^{\prime \prime} \cdot 14 \sin \zeta$, where ζ denotes the zenith distance, has been applied, and the results then smoothed in like manner.

Denoting the semi-differences $\frac{1}{2}$ (II-I) by A, and the semi-difference $\frac{1}{2}(\mathrm{E}-\mathrm{W})$ by B_{1} or B_{11}, the following table gives the smoothed values for these quantities which have been used:-

Table of Systematic Discordances.

Dec.	A.	B_{1}.	B_{11}.	Dec.	A.	B_{1}	B_{11}.	Dec.	A.	$B_{\text {I }}$	$B_{\text {III }}$.
+ 35	$+0.07$	-0"08	-0.12	- 15	-0.04	-0゙ィ6	-0.21	- 65	-0"05	-0.21	-0.13
30	+ 06	- 10	- 14	20	- 04	- $\cdot 16$	- 22	70	- -05	. 20	$-\cdot 12$
25	+ 05	- 12	- 16	25	- 05	- 17	- 23	75	-.05	- 19	- 11
20	+ 04	- 13	- 18	30	- 05	- 17	- 22	80	-.06	- 18	- 11
15	+ 03	- 14	- 19	35	- 05	- 17	- 21	85	- .06	- 18	- 11
	+.01	- 15	- 20	40	- 05	- 17	- 19		- 07	- 17	-12
+ 5	-00	- 15	- 20	45	-.05	- 18	-. 18	S.P. 85	+ 08	+ ${ }^{1} 7$	+ 13
	- 02	- 16	- 20	50	- 05	- 19 $-\quad 20$	- $\cdot 16$ -.15	", 80	$+\quad 08$ $+\quad 09$	+ 17 $+\quad 18$	+ 14 $+\quad 16$
5	- 03 $-\quad 03$	- 15 -15	- 20	55 60	- 05 $-\quad 05$	- 20 -20	1.16 $-\quad 14$ -14	" 75	+ 09	+ 18	$+16$

These corrections have to be applied to the observed declinations with the following signs in order to reduce the whole series to a uniform system :-

Position.	Clamp.	$\Delta \delta$.
I.	E.	$A+B_{1 .}$
I.	W.	$A-B_{\text {I. }}$
II.	E.	$-A+B_{\text {II. }}$
II.	W.	$-A-B_{\text {II. }}$

Consider next the latitude corrections. The separate observations have been reduced with the instantaneous nadir reading in combination with an assumed mean latitude and Albrecht's values for the periodie fluctuations of latitude, except in the ease of elose circumpolar stars observed during 1911. The latter have been separately discussed (Cape Annals, xi., part 3), the fluctuations of latitude being derived in this case from the observations themselves. From this discussion it appears that the latitude corrections required to reconcile the above-pole and below-pole observations at the Cape are less than those derived from observations at the International Latitude Stations by $0^{\prime \prime} \cdot 18$ in the mean, or, in other words, the adopted mean latitude used in the reductions requires to be diminished by $0^{\prime \prime} \cdot 18$. In deriving this value, however, no account was taken of the instrumental flexure. For the year in question the mean value of the flexure coefficient was $+0^{\prime \prime} \cdot 34$, giving as the amount of flexure in the neighbourhood of the pole $-0^{\prime \prime} \cdot 28$, in the sense in which it is to be applied to deelination observations at upper culmination.

Taking
$\Delta \delta=\Delta \phi+f \sin \zeta$ for stars above pole
$\Delta \delta=-\Delta \phi-f \sin \zeta$ for stars below pole
where $\Delta \delta$ denotes the correction required to the deelinations of the Ledgers, $\Delta \phi$ the eorrection to the adopted latitude, and f the flexure coefficient, the above determinations give

$$
\begin{aligned}
\Delta \phi+f \sin \zeta & =-0^{\prime \prime} \cdot 18 \\
f \sin \zeta & =-0^{\prime \prime} \cdot 28
\end{aligned}
$$

whence

$$
\Delta \phi^{\prime}=+0^{\prime \prime} \cdot 10
$$

The observations during this year were all made with the transit circle in Position I. Now we have already seen that there are small systematic discordances between results obtained in Positions I. and II., amounting at the pole to $+0^{\prime \prime} \cdot 14$, in the sense I-II. We may refer the latitude to the mean system $\frac{1}{2}(\mathrm{I}+\mathrm{II})$ by adding half this difference.

Thus the correction to the adopted latitude, suitable for application to determinations made by symmetrical observations in the two positions, as derived from the observations of circumpolars in the year 1911, is

$$
\Delta \phi=+0^{\prime \prime} 17 .
$$

When the instrument was used in Position I., in the years 1906-10, direct determinations of flexure indicate that the mean flexure coefficient was sensibly constant. Hence for these years observations of the same star, made in this position of the instrument, have been treated as homogeneous and combined into a single mean. The determinations above and below pole have been thus separately grouped. The mean differences between the results for each star are contained in the following table:-

Table XIII.-Differences between Declinations above and below pole in Cape Ledgers (1906-10).

Position I.

Star.	Clamp E.		Clamp W.		Star.	Clamp E.		Clamp W.	
	$\begin{gathered} \Delta \delta \\ \text { Above } \\ \text {-Below. } \end{gathered}$	Weight.	$\begin{gathered} \Delta \delta \\ \text { Above } \\ - \text { Below. } \end{gathered}$	Weight.		$\begin{gathered} \Delta \delta \\ \text { Above } \\ \text { ABelow. } \end{gathered}$	Weight.	$\begin{gathered} \Delta \delta \\ \text { Above } \\ \text {-Below. } \end{gathered}$	Weight.
- Octantis.	+0.80	6	$+0.75$	7	β Chamæleontis...	+ 0.66	2	+0.17	2
β Hydri.	-0.07	2	-0.34	2	¢ Octantis.,	+0.44	8	+0.40	8
Lacaille 505	+0.63	3	-0.58	3	κ Octantis	+0.96	7	+0.16	7
τ^{1} Hydri..	+1.02	- 2	+0.45	2	θ Apodis	$+1.06$	2	-0.93	2
Lacaille 634	+0.72	7	+0.26	6	a Apodis.	+ 0.18	2	+1.03	2
μ Hydri	+1.20	2	-0.11	2	z Octantis.	+1.15	6	+0.10	5
Lacaille 1029	+0.94	5	+0.41	6	Lacaille 6077	+ 0.86	2	+0.33	2
Lacaille 1848.	+0.94	4	+0.24	5	ρ Octantis.	+0.82	10	+0.59	5
¢ Hydri...	+1.58	3	-0.28	2	δ^{1} Apodis.	+0.74	2	+0.68	2
Brisbane 593.	+0.27	4	+0.40	3	γ Apodis	+137	2	+ 0.25	2
Lacaille 1707.	$+0.90$	9	+0.44	10	Lacaille 6545	+147	9	+0.83	7
γ Mensæ ...	+0.30	3	-0.55	2	β Apodis.	$+1 \cdot 20$	3	+0.45	2
Lacaille 2296.	+133	9	+105	7	χ Octantis.	+1.28	9	+ 0.68	6
κ Mensæ	+0.58	3	+0.34	2	σ Octantis..	+0.41	5	-0.29	3
Lacaille $2512 .$.	+0.11	6	+0.43	4	Lacaille 8094	+0.05	5	-0.32	4
θ Mensæ..	+0.62	2	+0.34	2	Lacaille 8257	+0.43	8	+0.32	7
Lacaille 3274.	+1.10	7	+0.19	3	μ^{1} Octantis.	$+0.67$	2	-0.68	3
A Octantis...	$+0.67$	5	-0.08	3	a Octantis..	+102	2	-0.48	2
θ Chamæleontis.	+0.52	3	-0.48	3	ν Octantis..	-0.41	3	-0.87	2
η Chamæleontis....	+0.13	2	-0.73	2	B Octantis.	+0.41	3	+0.22	3
ζ Octantis....	+0.84	6	$0 \cdot 00$	8	v (C) Octartis	+151	7	+0.34	4
. γ Chamæleontis....	+1.05	2	$+0.12$	2	τ Octantis	+1.43	7	+0.15	8
Lacaille 4510.	+0.58	5	-0.12	7	Lacaille 9494	+146	2	-0.33	3
η Octantis.	+0.49	7	$+0.31$	5	θ Octantis	$+0.81$	2	-0.74	3

The weights are derived from the formula

$$
\frac{n!n}{m+n}
$$

where m, n denote the number of observations made respectively at upper and lower eulminations. Taking the means with these weights, we find, from Clamp E,
and, from Clamp W,

$$
\Delta \delta(\text { above }- \text { below })=+0^{\prime \prime} \cdot 81, \text { weight } 217 ;
$$

$$
\Delta \delta(\text { above }- \text { below })=+0^{\prime \prime} \cdot 21, \text { weight } 192 .
$$

The difference between these results is in conformity with the discordances already found between declination determinations with reversed clamps. If we had previously applied the corrections represented by A, B_{1} above, the above determinations would have been increased respectively by the values of $2\left(A \pm B_{1}\right)$ at the pole. The resulting corrections to the declinations on account of the combined effects of latitude and flexure would then be

$$
\begin{aligned}
& -0^{\prime \prime} \cdot 40-\left(A+B_{1}\right)=-0^{\prime \prime} \cdot 16 \text { for Clamp } \mathbf{E} \\
& -0^{\prime \prime} \cdot 10-\left(A-B_{1}\right)=-0^{\prime \prime} \cdot 20 \text { for Clamp } \mathbf{W} .
\end{aligned}
$$

These results are in reasonably close agreement.
Subtracting the part $-0^{\prime \prime} \cdot 28$ due to flexure alone, we derive from the mean of the two latitude corrections referred to the mean system $\left[\frac{1}{2}(I+I I), \frac{1}{2}(E+W)\right]$

$$
\Delta \phi=+0^{\prime \prime} \cdot 10
$$

The flexure determinations made in Position II. during the years 1905-10 show variations from year to year. Consequently for this position of the instrument a separate investigation on similar lines has been made for each year. Table XIV. gives the results derived from separate stars.

Table XIV.-Differences between Declinations above and below pole in Cape Ledgers (1905-10).

Position II.

Star.	1905.		1908.		1910.	
	E.	W.	E.	W.	E.	W.
	$\Delta \delta \quad \mathrm{Wt}$.	$\Delta \delta \quad W \mathrm{t}$.	$\Delta \delta \quad$ Wt.	$\Delta \delta \quad \mathrm{Wt}$.	$\Delta \delta^{\circ} \mathrm{Wt}$,	$\Delta \delta \quad \mathrm{Wt}$.
o Octantis................	+1"20 $\quad 19$	+0.12 2.0	+0:32 $2 \cdot 0$	$-0 \ddot{75}$	"	"
β Hydri			+0.23 1.9		...	0.001 .0
Lacaille 505...........	-0.25 0.8	$-1.27 \quad 2.0$	H0.23 19	...	-	...
$\tau^{1} \text { Hydri }$..	-0.49 1.3	$-0.20 \quad 0.8$.
Lacaille 634............	-0.01 2.5	$-0.28 \quad 3.3$	-0.29 177	-101 1.5		
μ Hydri.			-	-1.02 1.5	+0.28 1.4	$-1.00 \quad 0.5$
Lacaille 1029.	+0.24 2.1	$-0.33 \quad 2.7$	-0.72	+0.17 1.3	...	
Lacaille 1848.		-	-72	-1.08 0.5	.	$-0.92 \quad 0.7$
¢ Hydri....................		+0.68 0.5	-0.33 1.3	$-0.55 \quad 2.0$		
Brisbane 593	-0.88 0.5	-0.44 10	+0.81 1.5	-0.64 2.0		
Lacaille 1707	+0.20 2.0	-0.11 1.2	+0.01 3.4	-0.66 3.2		
γ Mensæ................	+	...	-0.94 1.9	$-0.87 \quad 1.0$		
Lacaille 2296. .	-0.29 0.9	...	+0.14 2.8	-0.09 1.3		
к Mensæ..................	-		+0.33 1.5	+0.48 1.4		
Lacaille 2512.			+033 1.5	+0.88 0.5	-0.11 0.7	
Lacaille 3274.		-1.07 0.9	+0.26 1.7	-1.29 1.3	$-0.050 .5$	-0.39 1.2
θ Chamæleontis.......			+0.14 2.4	$-0.38 \quad 1.3$		
η Chamxeleontis.......			$-0.96 \quad 2.2$	$+0.50 \quad 0.7$		-0.21 0.7

Table XIV.-continued.

Star.	1905.				1908.				1910.			
	E.		W.		E.		W.		E.		W.	
	$\Delta \delta$	Wt.										
ζ Octantis	-0.35	$3 * 4$	-0.86	2.4	$-0^{\prime \prime} 29$	27	-0.67	$2 \cdot 2$	+0.53	$0 \cdot 7$	"	
y Chamæleontis					-0.23	199	$+0.45$	0.7			- 1'12	0.7
Lacaille 4510.	$+0.19$	$3^{\circ} 9$	$+0.68$	2.8	+0.04	1'3	-0.72	$2 \cdot 2$			-...	
η Octantis	$+0.23$	$2 \cdot 7$	$+0.32$	2.9	+0.45	1.9						
β Chauraleontis	+1.11	$0 \cdot 7$			-0.06	2.0	-0.48	0.8				
८ Octantis...............	$+0.54$	$3 \cdot 3$	-0.40	$3 \cdot 8$	+0.45	$2 \cdot 2$	-0.60	2.4				
κ Octantis	+0.34	$3 \cdot 7$	-0.55	$2 \cdot 1$					+0.78	0.5		
θ Apodis					-0.53	0.8	-1.07	177			...	
a Apodis				-1.15	$1 \cdot 2$	+0.19	$0 \cdot 8$	$+0.71$	$0 \cdot 7$
ζ Apodis	$+0.85$	$2{ }^{\circ} 0$	-0.44	0.8			-0.20	1.5				
Lacaille 6077..........					$+0.85$	1*3	-1.06	1.3				
ρ Octantis	+0.56	$1 \cdot 2$			-0.08	$0 \cdot 8$	-0.77	2.9	$+14^{2}$	I•5		
δ^{1} Apodis					+0.47	1*3	+0.07	$2{ }^{\circ} \mathrm{O}$	11	15		
γ Apodis					+0.74	2.0	-1.38	0.8				
Lacaille 6545	-0.18	I•5	+0.54	1.5	$+0.22$	2.5	-0.42	1.6	-0.66	$1{ }^{\circ} 0$	$+0.39$	$1 \cdot 2$
β Apodis...............					+0.55	$2 \cdot 0$	-0.70	17				
χ Octantis					$+0.44$	2'3	-0.26	1;				
Lacaille 8094...........			-0.09	0.9	-0.54	$2 \cdot 7$	-0.89	$1 \cdot 2$				
Lacaille 8257..........	+0.17	2.0			$+0.47$	2.9	$+0.61$	$2 \cdot 5$	$+0.41$	$0 \cdot 7$	-	
μ^{1} Octantis.......					+0.11	1.6	-0.65	1.6				
a Octantis					-0.02	$2 \cdot 2$	-0.24	$2 \cdot 2$				
ν Octantis					-0.78	I'3	-0.09	1.9				
$v(C)$ Octantis.........	-0.12	$3 \cdot 9$	+0.14	$3^{\circ} 0$			-0.43	$3 \cdot 5$				
τ Octantis	$+0.13$	$3 \cdot 2$	+0.04	$2 \cdot 7$	-0.27	$2 \cdot 2$	-0.59	$1 \cdot 2$	$+1.68$	$0 \cdot 7$		
Lacaille 9494	$+0.22$	$0 \cdot 7$	-0.09	I'3	-0.25	$2 \cdot 2$	-0.74	$1 \cdot 2$				
θ Octantis..............	-0.54	20°	$+0.16$	$2 \cdot 0$	$+0.02$	0.5			+0.12	0.5	-0.50	1.0

whence we derive in the mean
$\Delta \delta$ (above-below).

	Clamp E.	Weight.	Clamp W.	Weight.
	-1905	$+0^{\prime \prime} 17$		45
1908	+0.04	65	$-0^{\prime \prime} 15$	
1910	+0.47	10	-0.49	40

The differences $E-W$ give in the mean the value

$$
+0^{\prime \prime} \cdot 47,
$$

which corresponds very closely with the value of $2 B_{\mathrm{II}}$ at the pole, as previously determined.

Applying the corrections $-2\left(A \mp B_{\mathrm{II}}\right)$ respectively to results from Clamp E and Clamp W, we obtain the following values:-

$$
\Delta \delta \text { (above - below). }
$$

Clamp E.	Clamp W
+0.07	+0.23
-0.06	-0.11
+0.37	+0.11

and the corresponding corrections to the declinations on account of the combined effects of latitude and flexure :-

Clamp E. Clamp W.

1905	\cdot	\cdot	-	-0.04
1908	\cdot	\cdot	-	+0.03

The parts of these quantities due to flexure alone are respectively

$$
\begin{array}{llll}
1905 & \cdot & \cdot & - \\
1908 & \cdot & \cdot & - \\
1910 & \cdot & - & - \\
19.14 \\
10.0 .05
\end{array}
$$

whence the derived values for the latitude correction referred to the mean system are

> Clamp E. Clamp W.

Collecting the various determinations, we find as the latitude correction referred to the homogeneous system, $\left[\frac{1}{2}(I+I I): \frac{1}{2}(E+W)\right]$.

Period of Observations.	Position.	Clamp.	$\Delta \phi$.	Weight.
1906-10	I.	E	+0"12	217
	I.	W	+ 0.08	192
1905	II.	E	+0.23	
	II.	W	+0.15	40
1908	II.	E	+0.17	65
10	II.	W	+0.20	62
1910	II.	E	- 0.13	10 8
1011	II.	$\stackrel{\mathrm{W}}{\mathrm{E} \text { and } \mathrm{W}}$	- 0.01 +0.17	8 309

The weighted mean of these results gives as the definitive latitude correction applicable to the mean system of the Ledgers
C. F. C., 1900 ,

$$
\Delta \phi=+0^{\prime \prime} \cdot 14 \pm 0^{\prime \prime} \cdot 012
$$

The mean latitude of the transit-circle, as derived with the Pulkowa refraction constant, is therefore

$$
-33^{\circ} 56^{\prime} 2^{\prime \prime} \cdot 36
$$

Instead of utilising the mean value of the latitude correction in order to reduce the whole series of observations to a homogeneous system, it has been thought preferable to apply to each homogeneous group of observations the values of the corrections derived solely from the observations contained within the group. Corrections have accordingly been applied in accordance with the following table, which include the combined effects of latitude correction, flexure correction, and the reductions A, B, necessary to refer the whole to a homogeneous mean system.

Table XV.-Table of Systematic Corrections to the Declination.

Dec.	1906-11.		1905.		1908.		1910.	
	I. E.	I. W.	II. E.	II. W.	II. E.	II. W.	II E.	II. W.
+ 35°	+0゙39	$+0.55$	+0.31	+0.56	+0.17	$+0.41$	-0.18	+0.06
	+0.34	$+0.54$	+0.30	+0.59	+0.16	+0.45	-0.19	$+0.10$
25	+0.31	$+0.55$	+0.27	+0.59	$+0.14$	$+0.46$	-0.21	+0.12
20	$+0.27$	$+0.53$	+0.24	+0.60	$+0.12$	$+0.47$	-0.22	+0.15
15	+0.23	$+0.51$	$+0.22$	$+0.61$	+0.11	+0.49	-0.22	$+0.16$
10	+0.18	$+0.48$	+0.21	+0.61	+0.11	+0.51	-0.22	+0.18
+ 5	+0.15	$+0.45$	$+0.20$	+0.60	+0.11	+0.51	-0.21	+0.19
\bigcirc	+0.10	$+0.42$	+0.20	+0.60	+0.11	+0.52	-0.20	$+0.20$
- 5	$+0.07$	$+0.38$	+0.19	+0.59	+0.11	+0.51	-0.19	+0.21
10	+0.05	$+0.36$	$+0.17$	+0.57	$+0.10$	$+0.50$	-0.20	+0.21
15	$0 \cdot 00$	+0.33	+0.14	$+0.56$	+0.09	+0.51	-0.21	+0.22
20	-0.02	$+0.30$	$+0.10$	$+0.54$	+ 0.06	+0.50	-0.22	+0.23
25	-0.07	$+0.27$	+0.08	+0.53	$+0.04$	$+0.50$	-0.22	+0.23
30	-0.10	$+0.24$	$+0.05$	$+0.50$	$+0.04$	$+0.48$	-0.22	+0.22
35	-0.13	+0.21	$+0.03$	$+0.45$	$+0.04$	$+0.46$	-0.21	$+0.21$
40	-0.15	$+0.19$	$+0.02$	$+0.41$	$+0.05$	$+0.43$	0.20	+0.19
45	-0.19	$+0.17$	+0.01	+0.37	$+0.04$	$+0.40$	-0.19	$+0.17$
50	-0.23	$+0.15$	0.00	$+0.32$	$+0.04$	+0.36	-0.18	$+0.14$
55	-0.26	+0.13	-0.01	$+0.29$	$+0.04$	+0.34	-0.17	+0.12
60	-0.29	+0.11	-0.03	$+0.25$	$+0.04$	$+0.31$	-0.17	+0.11
65	-0.32	+0.09	-0.05	$+0.21$	+0.03	+0.29	-0.16	+ 0.09
70°	-0:34	+0.06	-0.06	$+0.18$	$+0.03$	$+0.27$	-0.16	+0.08
75	-0.36	$+0.02$	-0.07	$+0.15$	$+0.03$	+0.25	-0.15	+0.07
80	-0.38	-0.02	-0.08	+0.14	$+0.03$	+0.24	-0.15	$+0.07$
85	-0.39	-0.04	-0.10	$+0.12$	$+0.02$	$+0.23$	-0.15	$+0.07$
	-0.41	-0.07	-0.12	$+0.12$	$+0.01$	$+0.24$	-0.15	+0.08
$8 ;$ S.P.	$+0.43$	$+0.09$	+0.13	-0.13	$0 \cdot 00$	-0.26	$+0.15$	-0.10
80 "	+0.43 +0.45	+0.10	$+0.16$	-0.12	$+0.02$	-0.27	$+0.16$	-0.11
75 "	+0.48	$+0.12$	+0.18	-0.12	$+0.03$	-0.29	+0.17	-0.13

III.-Formation of Definitive Catalogue Places.

The systematic periodic corrections to the right ascensions derived in § I. (p. xxvi) and the corrections to the declinations derived in § II. (p. xxxiv) were applied to the Ledger places, and separate means were first formed for the groups of observations in each of the four conditions I. E., I. W., II. E., II. W. These separate means were then combined into a single mean, with weights dependent on the number of observations in each group, in accordance with the following scheme of weights:-

No. of Observations.	Combining Weight.
1	$\frac{1}{3}$
$2-3$	$\frac{1}{2}$
$4-7$	1
$8-10$	$1 \frac{1}{2}$
$10+$	2

In the case of those stars which are contained in Newcomb's Catalogue, the observations in the Ledgers have been referred to the mean epoch 1900.0 by the application of Newcomb's proper motions. In forming the final Catalogue positions, the proper motions thus introduced have been removed.

In the case of the double stars Sirius, Procyon, and a Centauri, the reductions to epoch include also the reductions from the bright (or observed) component to the centre of gravity of the system. The corrections thus introduced have been removed in like manner, so that the places quoted in the Catalogue represent the position of the actual object observed referred to the equinox $1900 \cdot 0$, but to the mean epoch of observation.

The right ascensions of the close circumpolars observed during 1911 have been adopted without further modification from the discussion of the observations contained in Cape Annols, vol. xi., part iii. The decliuations of these same stars have been derived from the combination of the results therein with additional observations in other years. These additional observations have first received corrections, as indicated in the last section, and the combination has then been effected by regarding all the observations as of equal weight, i.e. the means from the various groups have been combined with weights simply proportional to the number of observations in each.

The entries in the separate columns of the Catalogue have the following significance:-

Column 1.-" No." The rotation number. * and + attached to a number indicate a footnote, t being used in the case of double stars.

Column 2.-" Mag." The magnitude taken from Boss's Catalogue or the Harvard Publications, or a few, marked with an asterisk, from recent Cape Observations.

Column 3.-"Name." For Bradley stars the name in Auwers' Bradley has been adopted, except in a few cases mentioned in footnotes; for stars south of declination -23°, the C.G.A. has been followed, with the exceptions used by Auwers in vol. xlvii. of
the Monthly Notices. The names of the stars z Octantis, A Octantis, have been retained in accordance with the usage in previous Cape Catalogues. For stars otherwise unnamed, a Catalogue number is given in the following order of preference :-Bradley; Mayer; Lacaille; Piazzi ; Lalande; Brisbane; Catalogo General Argentina (C.G.A); Cape 1880 ; Gilliss's Circumpolar Zones; Bonn Durchmusterung. $m, p r$, seq, br in this column signify mass, preceding component, following compouent, or briglit component.

Columns 4 and 9.-"Mean R.A. $1900 \cdot 0$ " and "Mean Dec. $1900 \cdot 0$ " respectively. The mean right ascension and declination derived from the obserrations made for the purposes of this Catalogue, and combined according to the methods described above. They are referred to the mean epoch of observation, but to the equinox of 1900.0 . The third decimal figure is omitted from the Mean R.A. of Polar stars observed in 1911 only. The R.A. is supplied to the nearest second for stars not observed in this element.

Columns 5 and 10.-" " $\mu \Delta \mathrm{E}$." The quantities tabulated in these columns are the corrections on account of proper motion to be applied to the entries in the columns immediately preceding in order to refer the latter to the epoch as well as the equinox of 1900%. They depend on the values of the proper motions in columns 8 and 13 .

Columns 6 and 11.-_"Annual Variation 1900*0." The annual changes in right ascension and declination due to the combined effects of precession and proper motion. Where no entry is contained in the columns immediately preceding, the quantities in these columns represent the annual precession computed from the formulæ

$$
\left.\begin{array}{rl}
p_{\alpha} & =m+n \tan \delta \sin a, \tag{A}\\
p_{\delta} & =n \cos a
\end{array}\right\}
$$

where, in accordance with Newcomb's values for the precessional motion,

$$
\begin{aligned}
m & =3^{8.0} 07234 \\
n & =1^{8.33646} \\
& =20^{\prime \prime} \cdot 0468 .
\end{aligned}
$$

Columns 7 and 12.-"Sec. Var. 1900.0." The quantities given in these columns are in general the centennial variations of the annual variations due to the combined effect of the motions of the pole and equinox and the "proper motion" of the star. If we denote by α, δ the true co-ordinates of a star referred to the mean equator and equinox of epoch t, and suppose that t is expressed in terms of the tropical year as unit, the quantities involved are the values for 1900 of the expressions

$$
100 \frac{d^{2} a}{d t^{2}}, \quad 100 \frac{d^{2} \delta}{d t^{2}}
$$

Let us suppose that the "proper motion" of the star consists of a motion with uniform velocity along a great circle. In the annexed diagram, let S denote the star's position at time $t, S^{\prime \prime}$ its position at time $t+\Delta t$, and O the pole of the great circle $S S^{\prime \prime}$. Further let P, Υ represent the mean pole and equinox of the epoch t.

Let ρ denote the amount of the annual proper motion and χ its position angle with reference to the pole of epoch t. Then in the diagram below

$$
\begin{aligned}
S S^{\prime} & =\rho \Delta t \\
<P S C & =\frac{\pi}{2}-\chi \\
P S & =\frac{\pi}{2}-\delta \\
<Y P S & =a_{0}
\end{aligned}
$$

The variations in α, δ due to the precessional motions of P, Y are given by the formulæ, (A) above, where however m and n should not be regarded as strictly constant but as

functions slightly variable with the time t. In accordance with Newcomb's determinations these values at epoch $1900+t$ are

$$
\begin{aligned}
m & =3^{3 \cdot} \cdot 07^{2} 34+0^{8} \cdot 0000186 t \\
n & =1^{8 \cdot 33646-0^{8} \cdot 0000057 t} \\
& =20^{\prime \prime} \cdot 0468-0^{\prime \prime} \cdot 0000855 t .
\end{aligned}
$$

If μ_{a}, μ_{δ} denote the "proper motions" of the star, in R.A. and declination respectively, referred to the equator and equinox of epoch $t ; \mu_{a}, \mu_{\delta}$ are the parts of the complete expressions for $\frac{d \alpha}{d t}, \frac{d \delta}{d t}$ whích cannot be attributed to precession, i.e.

$$
\begin{equation*}
\mu_{a}=\frac{d a}{d t}-p_{a}, \quad \mu_{\delta}=\frac{d \delta}{d t}-p_{\delta} \tag{B}
\end{equation*}
$$

The changes thus represented by μ_{a}, μ_{δ} in the interval Δt result solely in the transference of the star from the point S^{\prime} to the point $S^{\prime \prime}$, irrespective of any motion which may be attributed to the points P, \mathcal{Y}. Hence if we draw the perpendicular $S^{\prime \prime} N$ on $P S$, we have

$$
\begin{aligned}
S^{\prime} N & =\mu_{a} \Delta t \cos \delta \\
S N & =\mu_{\delta} \Delta t .
\end{aligned}
$$

But we have also, from the triangle $S^{\prime} S^{\prime \prime} N$,
whence

$$
S^{\prime} N=S S^{\prime} \sin \chi \quad, \quad S N=S S^{\prime} \cos \chi
$$

$$
\left.\begin{array}{ll}
\mu_{a} \cos \delta & =\rho \sin \chi \tag{C}\\
\mu_{\delta} & =\rho \cos \chi
\end{array}\right\}
$$

- Denote by A, D the right ascension and declination of the point C. The motion of the star being along a great circle, this point will be stationary, and therefore any changes in A, D must be solely those resulting from the precessional motions of the pole and equinox of reference. Hence

$$
\left.\begin{array}{l}
\frac{d A}{d t}=m+n \tan D \sin A \\
\frac{d D}{d t}=n \cos A \tag{D}
\end{array}\right\}
$$

We have likewise, from (B),

$$
\left.\begin{array}{l}
\frac{d a}{d t}=m+n \tan \delta \sin \alpha+\mu_{\alpha} \tag{E}\\
\frac{d \delta}{d t}=n \cos a+\mu_{\delta}
\end{array}\right\}
$$

But in the spherical triangle PCS, we have

$$
P S=\frac{\pi}{2}-\delta, \quad P D=\frac{\pi}{2}-D, \quad S C=\frac{\pi}{2}, \quad<S P C=a-A, \quad<P S C=\frac{\pi}{2}-\chi
$$

whence

$$
\left.\begin{array}{rl}
\cos \delta \sin \chi & =+\sin D \tag{F}\\
\sin \delta \sin \chi & =-\cos D \cos (\alpha-A) \\
\cos \chi & =+\cos D \sin (\alpha-A)
\end{array}\right\} .
$$

and therefore, by means of (C),

$$
\left.\begin{array}{l}
\mu_{a} \cos ^{2} \delta= \tag{G}\\
\mu_{\delta} \quad \rho \sin D \\
=\rho \cos D \sin (a-A)
\end{array}\right\} .
$$

The conditions that the proper motion is uniform along a great circle are expressed by equations (D), together with the additional equation

$$
\frac{d \rho}{d t}=0
$$

Hence, if we differentiate equations (G) and substitute for $\frac{d A}{d t}, \frac{d D}{d t}$ from (D),
we find

$$
\begin{aligned}
& \frac{d}{d t}\left(\mu_{a} \cos ^{2} \delta\right)=\rho \cos D(n \cos A) \\
& \frac{d \mu_{\delta}}{d t} \quad=-\rho \sin D \sin (\alpha-A)(n \cos A)+\rho \cos D \cos (\alpha-A)\left(\frac{d a}{d t}-m-n \tan D \sin A\right)
\end{aligned}
$$

which, by means of (F), reduce to

$$
\begin{aligned}
\frac{d}{d t}\left(\mu_{a} \cos ^{2} \delta\right) & =n \rho(\cos \chi \sin \alpha-\sin \delta \sin \chi \cos \alpha) \\
\frac{d \mu_{\delta}}{d t} & =-n \rho \cos \delta \sin \chi \sin \alpha-\rho \sin \delta \sin \chi\left(n \tan \delta \sin \alpha+\mu_{a}\right) \\
& =-n \rho \sec \delta \sin \chi \sin \alpha-\mu_{a} \rho \sin \delta \sin \chi .
\end{aligned}
$$

Replacing $\rho \sin \chi, \rho \cos \chi$ by means of (C), we derive

$$
\begin{aligned}
& \frac{d}{d t}\left(\mu_{\alpha} \cos ^{2} \delta\right)=n\left(\mu_{\delta} \sin \alpha-\mu_{\alpha} \sin \delta \cos \delta \cos \alpha\right), \\
& \frac{d \mu_{\delta}}{d t} \quad=-n \mu_{a} \sin a-\mu_{a}^{2} \sin \delta \cos \delta
\end{aligned}
$$

In virtue of the second of equations (E), the first of these gives

$$
\frac{d \mu_{a}}{d t}=n \mu_{\delta} \sin \alpha \sec ^{2} \delta+n \mu_{a} \tan \delta \cos \alpha+2 \mu_{a} \mu_{\delta} \tan \delta
$$

Finally, on differentiating equations (E) and substituting for

$$
\frac{d a}{d t}, \frac{d \delta}{d t}, \frac{d \mu_{\mathrm{a}}}{d t}, \frac{d \mu \delta}{d t}
$$

from (E) and from the equations just derived, we find

$$
\begin{aligned}
& \frac{d^{2} \alpha}{d t^{2}}=\frac{d m}{d t}+\frac{d n}{d t} \tan \delta \sin \alpha+n \sec ^{2} \delta \sin \alpha\left(n \cos \alpha+\mu_{\delta}\right) \\
& +n \tan \delta \cos \alpha\left(m+n \tan \delta \sin \alpha+\mu_{a}\right) \\
& +n \mu_{\delta} \sin \alpha \sec ^{2} \delta+n \mu_{a} \tan \delta \cos \alpha+2 \mu_{a} \mu_{\partial} \tan \delta, \\
& =\frac{d m}{d t}+n^{2} \sin \alpha \cos a+\tan \delta\left(\frac{d n}{d t} \sin \alpha+m n \cos \alpha\right)+\tan ^{2} \delta\left(n^{2} \sin 2 \alpha\right) \\
& +2 n \mu_{\alpha} \tan \delta \cos \alpha+2 n \mu_{\delta} \sec ^{2} \delta \sin \alpha+2 \mu_{\alpha} \mu_{\delta} \tan \delta . \\
& \frac{d^{2} \delta}{d t^{2}}=\frac{d n}{d t} \cos \alpha-n \sin \alpha\left(m+n \tan \delta \sin \alpha+\mu_{\alpha}\right) \\
& -n \mu_{\alpha} \sin \alpha-\mu_{\alpha}{ }^{2} \sin \delta \cos \delta \\
& =\frac{d n}{d t} \cos \alpha-m n \sin \alpha-n^{2} \sin ^{2} \alpha \tan \delta-2 n \mu_{a} \sin \alpha-\frac{1}{2} \mu_{a}^{2} \sin 2 \delta \text {. }
\end{aligned}
$$

Replaciug $m, n, \frac{d m}{d t}, \frac{d n}{d t}$ by their values for the epoch 1900 , and expressing the results in seconds of time and seconds of arc respectively, we finally obtain the following numerical expressions for the centennial variations of the annual variations which figure in the Catalogue:

$$
\begin{aligned}
100 \frac{d^{2} \alpha}{d t^{2}}= & 08 \cdot 00186+[7.81255] \sin 2 \alpha \\
& +\{[8.47508] \cos \alpha-[6.756] \sin a\} \tan \delta \\
& +[8.11358] \sin 2 \alpha \tan \delta \\
& +[8.28865] \mu_{\alpha} \tan \delta \cos \alpha+[7.11256] \mu_{\delta} \sec ^{2} \delta \sin \alpha \\
& +[6.9866] \mu_{a} \mu_{8} \tan \delta, \\
100 \frac{d^{2} \delta}{d t^{2}}= & -[7.929] \cos \alpha-[9.65117] \sin \alpha-[9.28967] \sin ^{2} \alpha \tan \delta \\
& -[9.36474] \mu_{\alpha} \sin \alpha+[8.7367] \mu_{\alpha}^{2} \sin 2 \delta .
\end{aligned}
$$

Columns 8 and 13.-"Proper Motion." These quantities are the proper motions as above described. The numerical values adopted have been taken from Boss's Catalogue for all stars contained therein; from Newcomb when the Newcomb No. is given in the last column ; and from the Cape Catalogue of Astrographic Standard Stars when marked *.

Column 14.-"No. of Obs." This indicates the number of observations. When two numbers are quoted, the former applies to the right ascensions, and the latter to the
declinations. When a single number only is given, it is to be regarded as applicable to both elements, or in a few cases to the single element observed.

Column 15.-"Epoch 1900+." The mean epoch of observation, expressed in years in excess of 1900 . When the epochs of observation in the two elements are not identical, two epochs are quoted, the former of which refers to the right ascensions and the latter to the declinations.

Column 16.-"Boss No." The number of the star in Boss's Preliminary General Catalogue. For a few stars contained in Newcomb's Catalogue but not in Boss's, the Newcomb number is inserted, preceded by N.
IV.-Further Corrections to the Catalogue Right Ascensions.

The system of right ascensions depends on that of the equatorial clock stars as revised through the medium of the daylight observations. The extension of this system to the higher declinations depends on the assumption that the form of the pivots has remained sensibly invariable throughout the period of observations for the Catalogue. The pivot corrections employed were based on observations made in the years 1902 and 1904, before the commencement of the Catalogue observations.

A new determination has reccntly been made (1914 July). It will be sufficient here to exhibit the differences between the two determinations as affecting the mean results obtained in the four conditions I. E., I. W., II. E., II. W., as the star observations have been very approximately symmetrically distributed in relation to these conditions.

Denoting by ΔT the amount by which a transit is accelerated in consequence of pivot error, Table XVI., p. xli, gives the values of $\Delta T \cos \delta$, in the mean of the four conditions, for each 5° of zenith distance in accordance with both the old and new determinations.

This table shows that the effect of wear of the pivots, so far at least as it can affect the mean system of the Catalogue, is iusignificant and justifies the use of the earlier determinations throughout.

The equinox of the Catalogue has not been derived from fundamental considerations, but has been based on Newcomb's determination. It remains to examine to what extent the concurrent observations of the Sun indicate a modification of this equinox, i.e. by what amount in common all the Right Ascensions should be increased or decreased. The details of the Sun observations will be given in full in a separate publication. To the observed right ascensions and declinations of the Sun, "day corrections" have been applied, derived from observations of bright stars at about the
same time. These "day corrections" were computed from the final star places contained in the Catalogue. Thus the derived right ascensions and declinations of the Sun are in systematic accordance with those of the Catalogue. These

Table XVI.-Corrections on account of the Form of the Pivots.
$\Delta T \cos \delta$

Zenith Distance (South)	$\xrightarrow[\text { Deternination. }]{\text { Old }}$	$\begin{gathered} \text { New } \\ \text { Determination. } \end{gathered}$	Old-New.	Zenith Distance (South)	$\begin{gathered} \text { Old } \\ \text { Determination. } \end{gathered}$		Old-New.
-90°	$\begin{gathered} 8 \\ +0.025 \end{gathered}$	$\begin{gathered} \mathrm{s} \\ +0.029 \end{gathered}$	$\stackrel{s}{\mathrm{~s}} \mathrm{-}$	\bigcirc	$\begin{array}{r}\text { s } \\ +\quad 001 \\ \hline\end{array}$. 000	$\begin{array}{r}\text { s } \\ +\quad .001 \\ \hline\end{array}$
-85	+.025	+ 029	-.004	$+$	+ 002	+.002	-000
-80	+ 024	+.026	-.002	+ 10	+.005	+.004	+ 001
- 75	+ 022	+ 021	+ 001	+15	+-007	+ 005	+ 002
- 70	+.020	+ 020	-000	+ 20	+ 009	+ 007	+ .002
- 65	+ 019	+ 018	+ 001	+25	+ 009	+ 009	.000
- 60	+.015	+ 015	-000	+ 30	+ 008	+ 009	- 001
- 55	+ 010	+ 010	-000	+ 35	+ 004	+.007	-.003
- 50	+.005	+ 0004	+ 001	+ 40	+ 001	+.003	-.002
- 45	+ 002	$\bigcirc 000$	+ 002	+ 45	- 002	-000	-.002
- 40	-.003	- .003	-000	+ 50	- .008	- 004	-.004
- 35	-.007	- 0007	$\bigcirc 000$	+ 55	- 012	- 010	- 0.002
$-\quad 30$ $-\quad 25$	- 010	- 0009	- 0001	+60 $+\quad 65$	$\begin{array}{r}\text { - } 016 \\ \hline\end{array}$	- 015 -.018	- $\quad .001$
20	- -009	-.007	.002	+70 +70	. 020	. 020	$\cdot 000$
- 15	- 0007	- .005	-002	+ 75	-.021	. 021	-000
- 10	-.005	- 004	- 001	+80	-. 024	-. 026	+ 002
- 5	- 001	- 002	+ 001	+ 85	-. 026	. 029	+ 003
				+ 90	-.025	- . 029	+ $\cdot 004$

observations have been analysed by a method exactly similar to that given in Cape Annals, vol. ii., part 5. The resulting correction to the equinox derived in the different years over which the Sun observations extend in the sense in which it is to be applied as a uniform correction to the right ascensions of the catalogue are as follows:-

1907	\cdot		s
1908	\cdot	\cdot	-
1909	\cdot	\cdot	-
1910	\cdot	-	-0.104
1911	\cdot	\cdot	-0.104
10	-0.085		
		-0.026	

The discordance between the results obtained in different years, and more especially the pronounced fall in value for the year 1911, where a different method of observing was used, indicate that but little weight cau be attached to the results. Separating out c. F. C., 1900 .
the residuals as obtained from the observations by different observers, we obtain the following more extended table :-

Separate Determination of Equinox Correction by Different Observers.

Observer.	1907.	1908.	1909.	1910.	1911.
C	- ${ }^{\text {s }}$	s. -0.074	s -0.076	5 -0.094	s -0.064
AP	-0.105	-0.141	-0.146	-0.154	-0.018
RC	-0.090	-0.090	-0.093	-0.109	-0.067
AW	-0.077	-0.074	-0.105	-0.090	-0.034
M	-0.080	-0.080	-0.060	-0.089	-0.001
JW	-0.038	-0.058	-0.091	-0.082	
JJ	-0.100	-0.120	-0.106	-0.104	-0.051

If we disregard the final column, the quantities in the same horizontal line for the most part give a satisfactory agreement, showing that the discordances between quantities in the same vertical column depend to a greater extent on systematic personality in observing than on accidental errors of observation. Combining the observations of 1907-10, where the same method of observing was used throughout, we obtain the following determinations, each based on homogeneous series of observations:-
Observer.
C
AP
RC
AW
M
JW
JJ
S
$1907-10$.
s
-0.078
-.136
-.097
-.085
-.079
-.066
-.108
\ldots
1911.
${ }^{5}$
-0.064
-. 018
-. 067
-.034

- 001
$-.051$
- 060

Assuming that the accidental errors of these determinations are insignificant in comparison with the systematic errors, and that each determination is equally liable to such systematic error, we may advantageously combine these with equal weight and derive

$$
\Delta a=-0^{8.068} \pm 0^{8.0063} .
$$

The probable error here derived from the residuals represents the combined effect of accidental and systematic error.

This correction has not been applied, as it appeared preferable to await the result of a more definitive correction to Newcomb's equinox, which it would secm can scarcely be reliably determined without the combination of observations from several observatories and extending over longer intervals.

V.-Further Corrections to the Catalogue Declinations.

The declination system of the Catalogue has been based purely on fundamental considerations, except in one respect, viz. that the Pulkowa refraction tables have been adopted. The latitude of the Observatory is not sufficiently high to permit of a fundamental determination of the refraction constant being made by means of declinations observed at both culminations. Recourse must therefore be had to comparison of the declination system with results derived from northern observatories. The most recent and comprehensive data available for the purpose are those of Boss's Preliminary General Catalogue.

Arranging the results in order of declination, we obtain the following comparison :-

> Comparison between the Declinations of the Catalogue and Boss's Preliminary General Catalogue.

Limits of Declination.	$\Delta \delta$ (Cape Funda-mental-Boss).	No. of Stars.	Limits of Declination.	$\Delta \delta$ (Cape Funda-mental-Boss).	No. of Stars.
above $+30^{\circ}$	+0"49		-40° to -50°	+0'29	176
$+30^{\circ}$ to $+20^{\circ}$	+0.36	110	$-50^{\circ}, \underline{6} 0^{\circ}$	+0.27	104
$+20^{\circ}$, $+10^{\circ}$	+0.28	112	-60 ${ }^{\circ}$ ", 70°	-0.02	72
$+10^{\circ}$ " 0°	+0.10	121	-70° ", -80°	-0.12	55
$0^{\circ} " 1-10^{\circ}$	+0.02	101	-80 \%, -90	$+0.03$	35
-10° ", -20°	- 0	93	below pole	$-\Delta \delta$	\ldots
$-20^{\circ}, 1,-30^{\circ}$	+0.10	115	-90° to -80°	-00	33
$-30^{\circ}, \ldots-40^{\circ}$	+0.18	93	$-80^{\circ},{ }^{\circ}-70^{\circ}$	-0.10	24

Equating these differences to the expression

$$
-\Delta \phi-\Delta \pi \tan \xi
$$

where $\Delta \phi$ denotes a correction to the latitude consequently on an alteration Δk in the refraction constant, and weighting the resulting equations proportionally to the numbers in the final column, we derive the normal equations

$$
\begin{aligned}
129^{\circ} 0 \Delta \phi+31 \cdot 6 \Delta k & =-20^{\prime \prime \prime} \cdot 33 \\
31 \cdot 6 \Delta \phi+133^{\prime} 6 \Delta k & =-16^{\prime \prime} \cdot 97
\end{aligned}
$$

with the solution

$$
\begin{aligned}
& \Delta \phi=-0^{\prime \prime \prime} \cdot 134 \\
& \Delta k=-0^{\prime \prime} \cdot 095 .
\end{aligned}
$$

The refractions used in the formation of the Catalogue are taken from the Pulkowa Tabulx Refractionum. For atmospheric conditions which correspond elosely with the mean conditions under whieh the observations were made the
refractions computed from these tables are given in the second column of the following table :-

Comparison of Mean Refractions from Pulkowa and Paris Tables.
Barometer 30 inches. Thermometer $60^{\circ} \mathrm{F}$.

ζ	Pulkuwa.	Paris.	Diff.	$\Delta k \tan \zeta$
$0{ }^{\circ}$	$0 \cdot 0$	000	$0 \% 00$	000
10	10.04	10.02	+.02	. 02
20	20.73	20.69	. 04	-03
30	$32 \cdot 87$	$32 \cdot 81$	-06	.05
40	47.76	$47 \cdot 68$	-08	-08
45	$56 \cdot 89$	56.79	-10	-10
50	67.77	$67 \cdot 64$	-13	- 11
55	8I.14	80.99	-15	-13
60	98.30	98.13	-17	-16
65	121.49	121.28	-21	- 20
70	$155^{\circ} \mathrm{I}$	154.85	- 26	-26
75 80	209.2 31.8	$208 \cdot 8$	-4,	-35
80	3118	311'2	$\cdot 6$	54

The third column gives the refractions for the same atmospheric conditions derived from the tables of the Connaissance des Temps, 1916. It will be seen that these are slightly smaller than those from the Pulkowa tables, but that the differences shown in the fourth column correspond almost exactly with the value $\Delta k \tan \zeta$ in the fifth column as derived from a comparison of the present Catalogue with Boss. Thus it appears that the refractions used have been too large and that a very close agreement between the results of the Cape observations and tbose of northern observatories would have been sccured had the Paris tables been used instead of the Pulkowa tables. A similar but slightly larger reduction from the Pulkowa values is indicated by a recent discussion of Pulkowa observations (v. Backlund, Die Deklinationssysteme der Pulkowoer Kataloge 1885, 1892, 1900, Mitteilungen der Nicolai-Hauptsternwarte zu Pulkowo, Band VI. 1).

It remains to examine the effect of the modified constant on the derived value of the latitude of the transit-circle. From a comparison between observations of upper culminations and lower culminations of circumpolar stars, using the Pulkowa refractions, the value obtained above, (§ II.) p. xxxiv, was

$$
-33^{\circ} \quad 56^{\prime} \quad 2^{\prime \prime} \cdot 36
$$

The discussions of this section indicate a correction to this quantity amounting to

$$
-0^{\prime \prime \prime} \cdot 134
$$

Introduction.

yielding as the definitive value of the latitude of the transit-circle from the observations for the present Catalogue

$$
-33^{\circ} \quad ; 6^{\prime} \quad 2^{\prime \prime} \cdot 49
$$

We may compare with this the values derived from previous series of observations. These have all been obtained with different instruments, but the difference of geodetic latitude has been accurately derived from measurements at the surface, showing that the position of the new transit-circle is in latitude $1^{\prime \prime} .05$ to the North of the old.

The latitude of the old transit-cirele derived from observations between 1879 and 1885 is discussed in the Introduction to the Cape Catalogue, 1885 (p. xlvii.), and the definitive value arising from this discussion is

$$
-33^{\circ} \quad 56^{\prime} \quad 3^{\prime \prime} \cdot 54
$$

Again, from zenith telescope observations by the Talcott method between the years 1886 and 1891, the latitude of instrument, mounted in the same geodetic latitude as the old transit-circle, was found to be

$$
-33^{\circ} \quad 5^{6^{\prime}} \quad 3^{\prime \prime} \cdot 65
$$

(Introduction to Cape Catalogue, 1885, p. xlvii.)
The result derived for the old transit-circle for the period 1885-95 (Introduction to Cape Catalogue, 1890, p. xxiv.) is

$$
-33^{\circ} \quad 5^{\prime} \quad 3^{\prime \prime} \cdot 45
$$

The mean of these three determinations, regarded as of equal weight, amounts to

$$
-33^{\circ} \quad 56^{\prime} \quad 3^{\prime \prime} \cdot 55
$$

or, on applying the correction for the difference of latitude of the two instruments, we obtain for the latitude of the new transit-circle

$$
-33^{\circ} \quad 56^{\prime} \quad 2^{\prime \prime} \cdot 50
$$

in almost exact accord with the value derived from the discussion of the observations for the preseut Catalogue.

NOTE.

The Right Ascensions of the Catalogue depend on Newcomb's equinox, but have in other respects been fundamentally derived.

To refer the observations to an absolute system based on concurrent Cape observations of the Sun, a correction of

$$
-0^{8.068 ~(v . ~ p . ~ x l i i) ~}
$$

should be applied throughout.
The Declinations are based on the Pulkowa refractions (Tabulce Refractionum), and the value

$$
-33^{\circ} \quad 56^{\prime} \quad 2^{\prime \prime} \cdot 3^{6} \quad \text { (v. p. xxxiv) }
$$

for the mean latitude of the transit-circle, derived from the observations themselves.
A re-determination of the refraction constant and latitude from comparison of the results with Boss's Preliminary General Catalogue.indicates the following correction to the declinations

Dec.	$\Delta \delta$.	Dec.	$\Delta \delta$.
$+40^{\circ}$	-1.		
+30	-0.47	-30	-40
+20	-.27	-40	-0.14
+10	-.23	-.13	
0	-.20	-60	-.11
-10	-.18	-70	-.09
-20	-.16	-80	-.04

corresponding with the resulting value

$$
-33^{\circ} \quad 56^{\prime} \quad 2^{\prime \prime} \cdot 49
$$

for the latitude of the transit-circle.

CATALOGUE OF 1293 STARS

REDUCED WITHOUT PROPER MOTION

TO THE
EQUINOX 1900.0.

No.	Mag.	Name.	Mean R.A. $1900^{\circ} 0$.	$\mu_{a} \Delta \mathrm{E}$.	Annual Variation $1900^{\circ} 0$	Sec. Var. 1900 o.	Proper Motion.	Mean Dec. $1900^{\circ} 0$.	$\mu_{\delta} \Delta \mathrm{E}$.	Annual Variation $1900^{\circ} 0$.	See. Var. 1900\%.	Proper Motion.	No. of Obs.	Epoch $1900+.$	$\begin{aligned} & \text { Boss } \\ & \text { No. } \end{aligned}$
					$+^{8}$	\$	s								
1	$4 \cdot 8$	33 Piscium	$\begin{array}{lll} 0 & 0 & 12.978 \end{array}$	+ ${ }^{-013}$	+3.0709	-0014	- ${ }^{\text {coi }} 3$	-6 615 59'94	- 87	+20'137	-:009	+.090	19	$9 \cdot 64$	1
2	6.6	5 Ceti	$3.4 \cdot 856$	- 003	$3^{\circ} 0717$	$+\cdot 0005$	+.0003	- 3 0 15.60	+ 05	$20 \cdot 040$	15	-.005	16:17	$9 \cdot 32$	9
3	$2 \cdot 0$	21 Andromed	313.099	- $\cdot 087$	3.093 ${ }^{\text {b }}$	$+.0185$	+.0106	+28 3216.89	+ 1.32	19.884	O15	-16ı	22	8.18	-
4	$7 \cdot 4$	Lacaille 9	316.92		2.751	- 397		-86 $3544 \cdot 54$		20.045	014		45:68	11.55:10'11	
5	3.9	Phonicis............e	4. $20 \cdot 374$	-092	$3 \cdot 057$ I	-0288	+.0112	-46 $17 \begin{array}{llll} & 56 \cdot 07\end{array}$	$+1 \cdot 52$	$19 \cdot 857$	017	-186	22: 23	8.22:8.15	16
6	$5 * 7$	Sculptoris ${ }^{2}$	- 629.826	-010	$+3.0532$	- -0137	+.0013	-28 2123.93	- 13	$+20.056$	-021	+ 017	23	7.93	23
7	5*3	Sculptoris θ	$639 \cdot 175$	- 104	3.0574	- -0190	+-0129	-35 $4133{ }^{1} 28$	- 96	$20 \cdot 158$	-022	+ 120	22	$8 \cdot 03$	24
8	$2 \cdot 9$	88 Pegasi............... γ	$8 \quad 5 \cdot 132$	$\cdot 000$	3.0846	+ . 0102	-0000	+143739.38	+ - 11	$20 \cdot 021$	024	- 013	22: 2 I	$8 \cdot 52: 8 \cdot 27$	27
9	$5 \cdot 9$	Lacaille 23............	$932 \cdot 16$	+ $\cdot 08$	2.351	- 200	-.007	$\begin{array}{lll}-85 & 33 & 2.25\end{array}$	-68	20.089	-023	+.059	31:30	11.54	32
10	$6 \cdot 1$	35 Piscium	$949 \cdot 786$	- 06 I	$+3 \cdot 0873$	+ 0068	+.0066	+ 81556.22	+ 22	$20 \cdot 004$	-028	- 024	17	9'31	35
11	7×5	Octantis............. 0	$01230 \cdot 65$	-21	-0.768	+ $2 \cdot 376$	+.019	$\begin{array}{llll}-88 & 55 & 8 \cdot 34\end{array}$	- 04	+20.022	- 002	+ 005	46:130	11 59.89 .91	47
12	$3 \cdot 7$	8 Ceti	$14 \quad 19.986$	+ - ${ }^{\text {I I }}$	+3.0573	22	2	-922 42.05	+ 29	19.976	. 036	- 032	22	9•16:8.95	53
13	$4 \cdot 4$	Toucani ζ	14 54.339	-2.546	3.1549	-066I	$+\cdot 2723$	-65 $2733 \cdot 75$	-10.90	21.171	-038	+1.166	17	9×35	55
14	5'7	41 Piscium......... ...d	1527.085	+.004	$3 \cdot 08_{40}$	+ .0068	0004	+7385.59	- 13	20.015	-039	+ 014	16	9.51	56
15	7’1	Lacaille 75............	1948.290	- 438	$2 \cdot 9841$. 0324	+.0572	-51 $35 \quad 29.58$	+ 1.99	$19 \cdot 712$	-046	- 260	24	$7 \cdot 65$	72
16	6.0	44 Piscium	- $2016 \cdot 563$	+ 012	+3.0739	+ •0037	- -0013	+ 123934	+ 15	+19.952	- 0.048	- 016	19:18	9'58: 9 '55	73
17	$2 \cdot 8$	Hydri β	$2038 \cdot 34$	-8.17	2208	- .1480	+•7015	-77 4859.46	$-3 \cdot 18$	20.290	-048	+ 323	20:58	II $64: 9.86$	74
18	$2 \cdot 3$	Phœnicis............ α	2120.760	- 147	$2 \cdot 9746$	- 0228	+.0175	-42 $5^{0} 59.56$	$+3 \cdot 38$	19.559	-049	- 401	22	$8 \cdot 42$	78
19	$6 \cdot 7$	10 Ceti	2129.712	-. 046	3.0758	+ .0028	+.0048	- o 3612.31	. 02	19.961	-051	+.002	17	$9 \cdot 48$	79
20	$6 \cdot 3$	12 Ceti	24 56.146	-. 004	3.0614	+ 0009	+'0005	- $43935 \cdot 53$	+ .05	19.921	- 057	- 007	32:30	8.23:7.61	90
21	5	Piazz	- 2522.691	+.022	+ 3'0029	0095	26	-24 2026.94	- 13	+19.940	- -057	+ 0.016	22: 23	$8 \cdot 33: 8.23$	91
22	$6 \cdot 6$	Lacail	2534.760	+ 0006	2.9400	- 0206	-.0006	-41 2933.94	- .13	19.936	-056	+.014	18:19	$9 \cdot 29$	92
23	$5 \cdot 0$	Phœnicis.......... λ^{1}	$2635 \cdot 785$	- 115	$2 \cdot 9051$	-0274	+.0130	-49 21 $23 \cdot 12$	12	19.926	-058	+.014	20:21	$8 \cdot 82: 8 \cdot 76$	99
24	$4 \cdot 6$	Toncani............ $\boldsymbol{\beta}^{1}$	$2657 \cdot 894$	- $\cdot 123$	$2 \cdot 7707$	-0443	+.0131	-63 $3032 \cdot 99$	+ 51	19.854	-056	--054	16	$9{ }^{\circ} \mathrm{I}^{1}$	100
25	$5 \cdot 7$	Lacail	$2844 \cdot 278$	+ -018	2:9731	-0126	-.0023	$-30 \quad 633 \cdot 50$	+ 22	19.861	-063	-028	24:25	$778: 773$	109
26	$7 \cdot 2$	L	- 2928.538	-. 067	+2.9206	- 020213	+.0080	-42 $5^{8} 59^{\circ} 50$	-19	+19.904	-063	+.023	21:22	8.35: $8 \cdot 29$	113
27	$5 \cdot 7$	Lacaille	$2942 \cdot 638$	- $\cdot 224$	$2 \cdot 8675$	- .0303	+.0238	$-525531 \cdot 77$	- $\quad 23$	19.904	-063	+.025	17:18	942: $9^{\circ} 25$	114
28^{\dagger}	$5{ }^{\circ}$	13 Ceti...	$30 \quad 6 \cdot 326$	- $\cdot 25^{8}$	$3 \cdot 0869$	+ .0014	+.0272	- 48836.42	+ 17	19.856	-068	- 018	20	$9 \cdot 48$	116
29	4.4	29 Andromedæ........ π	3132.275	- $\cdot 014$	3'1939	+ .0244	+.0017	+33 10 7.89	+ .07	19.848	-072	- $\cdot 009$	21	$8 \cdot 03$	123
$30+$	5.9	Lacaille 147....m...	3213.393	-.854	3.0860	- 0104	+'1022	$\begin{array}{llll}-25 & 19 & 2.88\end{array}$	+ 07	19.840	-073	- 009	25:28	$8 \cdot 36: 8 \cdot 07$	127
31	4.5	30 Andromedæt	- $3315 \cdot 982$	+ ${ }^{1} 54$	$+3 \cdot 1612$	+ 0208	-*0173	+28 $\mathbf{4}_{6} 5 \cdot 60$	+2.21	+19.588	- - 075	- ${ }^{248}$	18	8.93	130
32	$3 \cdot 4$	31 Andromedæ........ δ	33 58•755	-. 082	3.1985	+ 0224	+-0107	$+3018 \quad 49^{1} 12$	+ 66	19.741	-077	- 086	21: 22	7.67:7.62	132
33	$8 \cdot 0$	Lacaille 228	3631.00	...	$0 \cdot 184$	+ 358	...	$\begin{array}{llll}-85 & 4^{8} & 4 \cdot 67\end{array}$	-..	19.793	- 013	...	35:53	11•55: 10.17	
34	4.7	Phœnicis μ	$36 \quad 36 \cdot 087$	+ $\cdot 020$	$2 \cdot 8446$	226	- $\cdot 0027$	$\begin{array}{llll}-46 & 38 & I \cdot 81\end{array}$	+ 19	19.766	-074	26	27:28	$7 \cdot 45: 7 \cdot 36$	142
35	$2 \cdot 0$	16 Ceti.................. β	$3^{8} 34 \cdot 367$	- 128	3.0133	- $\cdot 0054$	+.0160	$\begin{array}{llll}-18 & 32 & 7 & 38\end{array}$	- 3^{2}	$19 \cdot 803$	-082	+.039	23:22	8.02 : S.10	147
36	$4 \cdot 6$	Phœnicis η	- $3851 \cdot 719$	+ .008	+ 2.7104	- 0318	-*0009	-58 0 - 40.69	- . 06	+19.766	- .075	+-007	20: 21	$8 \cdot 65: 8.50$	148
37	6. I	Sculptoris λ^{2}	3922.278	- 174	+2.9070	- .0171	+.0195	$\begin{array}{llllllll}-38 & 58 & 20 \cdot 29\end{array}$	- 1.03	19.868	- 081	+ 116	18	8.91	${ }^{1} 53$
38	$6 \cdot 8$	Lacaille 248	39 44.98		-0.446	+ 584		-86 14 $57 \cdot 36$		19.746	+.003		49:77	$1160: 10 \cdot 21$	
39	$5 \cdot 4$	Lacaille 193	39 47.495	+ .031	+2.9730	$\cdot 0073$	-.0034	-22 $33 \begin{array}{lll}\text { 20.41 }\end{array}$	- 79	19.832	$-.083$	$+\cdot 087$	18	$9^{\circ} 07$	155
40	$6 \cdot 0$	Lacaille 207	$41 \quad 4.343$	- 145	$2 \cdot 8246$	- . 0232	+.0178	$\begin{array}{llll}-48 & 6 & 3 \cdot 35\end{array}$	- 66	19.807	-082	+.08I	20: 21	$8 \cdot 15: 8 \cdot 09$	158
4 I	4	34 Andramedæ........ δ	042 2.115	+.066	+ 3.1721	+ .0180	--0074	+23 4322.88	+ 72	+19.631	-.093	- .080	19	8.96	164
42	$6 \cdot$	Mayer 24..............	43 8.729	- 480	3.1432	+ .0065	+.0500	+ $44548 \cdot{ }^{2}$	+10.97	18.549	-096	-I. 144	16	9*59	171
43	$4 \cdot 6$	63 Piscium............ δ	4329.666	-.053	$3 \cdot 1090$	+ .0080	+'0055	+ 7226.54	+ 42	19.643	- 094	-.044	18:17	9.67:9.64	173
44	5.1	Hydri λ	$45 \quad 7 \cdot 493$	-.315	2.0993	- .0367	+.0355	$\begin{array}{llll}-75 & 28 & 4 \cdot 36\end{array}$	+ 14	$19 \cdot 644$	-069	- . 016	19	8.88	182
45	5°	20 Ceti	4753.827	+.004	3.0638	+ .0037	- 0004	- 14114.25	+ 15	19.595	Ior	- 016	21:22	$9 \cdot 55: 9^{\prime} 5^{2}$	191
46	5.5	Toucani............ λ^{2}	- 5116.237	+ .017	$+2.2524$	- -0325	-.0023	$\begin{array}{lll}-70 & 4 & 4 \cdot 64\end{array}$	+ 28	+19.510	- 08 I	-.037	26	$7 \cdot 45$	204
47	$5 \cdot 7$	68 Piscium............. h	5225.292	- . 008	3.2374	+ 0221	+.0009	+28 276.34	+ $\cdot 11$	19.513	${ }^{1} 15$	- 012	17	$9 \cdot 38$	209
48	$4 \cdot 4$	Sculptoris.......... α	$5347 \cdot 317$	-.004	$2 \cdot 8942$	- 0099	+.0006	-29 5352.18	- 11	19.498	- 106	+ ${ }^{\text {OOI }}$	27:28	$7 \cdot 35: 7 \cdot 32$	212
49	$4 \cdot 5$	71 Piscium............. ϵ	$5745^{\circ} \mathrm{IO9}$	+.042	3. 1099	+ .0088	-.0054	+ 7216.40	- 22	19.442	121	+ 028	24:25	$7 \cdot 83: 771$	226
50	$6 \cdot 3$	Lacaille 288	$5748 \cdot 137$	- 005	$2 \cdot 5487$	- .0247	+.0006	$\begin{array}{llll}-57 & 32 & 26 \cdot 84\end{array}$	-13	19.427	-101	+-015	23:24	$8 \cdot 48: 8.41$	227

28. $59,6.6$; very close binary.
29. $6 \cdot 6,6.7$; very close binary.

No.	Mag.	Name.	Mean R.A. $1900^{\circ} 0$.	$\mu_{a} \Delta E$.	Annual Variation $1900^{\circ} 0$.	Sec. Var. 1900°.	Proper Motion.	Mean Dec. $1900^{\circ} 0$.	$\mu_{\delta} \Delta \mathrm{E}$.	Annual Variation $1900^{\circ} 0$.	Sec. Var. $1900^{\circ} 0$.	Proper Motion.	No. of Obs.	Epoch 1900+.	Boss No.
			h m s L 5		$\stackrel{\text { s }}{ }$	S.0072	. ${ }^{\text {. }} 005$								
101	$5 \cdot 6$	Lacaille 599	I 55 3I.514	+ $\cdot 046$	+ 2.4751	-0072	. 0055	-42 $3047 \cdot 29$	+ $\quad .85$	+17.449	- 181	- '104	20:21	$8 \cdot 30: 8 \cdot 15$	456
102	$2 \cdot 9$	Hydri................ ${ }^{\text {a }}$	$15537 \cdot 480$	- 323	1.8901	-0034	+.0355	-62 $\quad 3 \quad 22 \cdot 33$	'40	17.594	143	+.044	19:21	9'11: 9 909	45^{8}
103	$4 \cdot 8$	Fornacis.............v	200.511	- $\cdot 007$	$+2 \cdot 6909$	- $\cdot 0035$	+.0009	-29 $4635 \cdot 84$	-02	17.363	204	+ 002	25:26	7-89:779	474
104	$8 \cdot 1$	Lacaille 760..........	$1 \quad 0.85$		-5.524	+ I'524		$-853116 \cdot 35$		$17 \cdot 317$	+ 399	...	$30: 46$	11.62: 10'11	...
105	$2 \cdot 0$	13 Ariet	$132 \cdot 167$	- 113	+ 3.3728	+ 0204	+-0137	+22 59 21.50	+ I.16	$17 \cdot 148$	- $\cdot 257$	- 146	25:24	8.22:794	477
106	$7{ }^{\circ} 2$	Lacaille	2313.30		- 5.138	+1*347		$\begin{array}{lllll}-85 & 14 & 3.97\end{array}$		+17.218	+ 3776	...	37 : 59	11'61: $10{ }^{\circ} 30$	
107	3.0	4 Trianguli........... β	$335 \cdot 525$	- 101	$+3 \cdot 5566$	+ .0305	+.0123	+34 $3051 \cdot 98$	+ 38	$17 \cdot 156$	- 274	- 0.46	21:22	8.21: 8.28	482
108	$7{ }^{\circ} 0$	Lacaille 641	4 I.629	+ 002	2.4445	-0060	-0002	$\begin{array}{llllllllllll}-42 & 21 & 17 & 58\end{array}$	+ 16	$17 \cdot 163$	191	-.019	20:23	$8 \cdot 85: 8.48$	484
109	$6 \cdot 1$	15 Arictis	$5 \quad 4 \cdot 980$	-.059	3.3178	+ 0177	+.0062	+19 142.95	+ 27	17.107	- 259	-.028	16	$9 \cdot 47$	491
110	$7 \cdot 2$	Lacaille	$538 \cdot 398$	- . 025	$2 \cdot 3526$	-0061	+.003 ${ }^{*}$	-45 56 19.01	+ 41	$17 \cdot 109$	-186	-.05*	20	$8 \cdot 24$	
III	$4 \cdot 6$	65 Ceti................ ξ^{1}	$2741 \cdot 908$	+ .016	$+3 \cdot 1747$	+ .0116	-.0017	+ 82239.95	+ .07	+17.008	- 252	- $\cdot 007$	23:25	9.65: $9 \cdot 67$	505
112	$5 \cdot 4$	Fornacis........... μ	$830 \cdot 289$	- 014	$2 \cdot 6438$	-0032	+.0018	-31 11133.99	-01	$16 \cdot 979$	212	+.002	$25: 26$	7'54: 7'49	506
113	$6 \cdot 2$	Lacaille 682...........	10 29.150	+.026	$2 \cdot 4289$	-0050	-.0031	-41 $37 \begin{array}{lll} & 57 & 01\end{array}$	+ 27	$16 \cdot 851$	198	-.033	20	$8 \cdot 25$	512
114	4.1	9 Triangali........... ${ }^{\text {\% }}$	II 22.032	-.029	3. 5534	+ .0292	+.0034	+33 23 4*96	+ 44	$16 \cdot 792$	288	-.051	20: 21	8.64 : 8.55	517
115	$5 \cdot 9$	67 Ceti	II 59.780	-. 058	2.9906	+ .0049	+.006I	- 6 52 $59 \cdot 39$	+ 99	$16 \cdot 705$	245	-108	19	$9 \cdot 43: 9.15$	518
116	57	22 Arietis.............. θ	21233.670	+.009	+ 3.3292	+ .0180	-.0010	+19 2619.33	+ .05	+16.780	$\cdot 272$	- .006	18	9*OI	521
117	$3 \cdot 8$	Eridaui............. ϕ	1256.306	-.073	2.1438	-0045	+-0081	-51 $58830 \cdot 01$	+ 26	16.739	-179	-.029	19	8.99: 8.85	524
II8	var.	68 Ceti	$1417 \cdot 645$	+ .001	3.0279	+ 0062	-.0001	- 32555.99	+2.27	16.466	-251	-. 237	20:18	9*68:9*57	530
119	$5 \cdot 5$	Fornacis............к	17 58.112	- .113	- $2 \cdot 745^{8}$	-0007	+.0147		+ 47	$16 \cdot 462$	- 235	-.061	24	$7 \cdot 66$	543
120	$5 \cdot 6$	24 Arietis.............. $\xi^{\text {, }}$	$1927 \cdot 344$	- $\cdot 008$	3.2100	+ .0127	+'0008	+10 928.26	$\cdot 14$	16.434	- 275	-.015	17:18	9.40:9.29	546
121	$4 \cdot 3$	Hydri............... δ	21957.969	$+.089$	+ 1.0536	+ .0290	02	$\begin{array}{lll}-69 & 6 & 52.08\end{array}$	- 11	+16.435	- 094	+ -012	20	$8 \cdot 75$	54^{8}
122	$5^{\circ} 0$	72 Ceti ρ	$21 \quad 7 \cdot 124$	+ .016	2.8961	-0032	-.0017	-12 $44 \begin{array}{ll}\text { 29.09 }\end{array}$	+ 09	16.356	-251	- .009	16	$9 \cdot 63$	551
123	5.6	Horologii............ λ	226.028	+.097	1.6731	-0043	0120	-60 $4535 \cdot 38$	+ 1.06	$16 \cdot 180$	${ }^{1} \mathrm{I}_{4} 8$	- 135	21:24	$8 \cdot 06: 7.87$	557
124	$6 \cdot 2$	Hydrik	2216.041	+ 214	$0 \cdot 3205$	-0766	-. 0230	-74 51550	+ 01	16.306	-032	-.001	19	9'32: $9^{\prime} 17$	558
125	$4{ }^{\circ} 4$	73 Ceti ξ^{2}	2250.483	- 024	3-1847	-0116	+.0026	$+8 \quad 042 \cdot 93$	+ 04	$16 \cdot 274$	278	- $\cdot 004$	24:22	9'11: 9^{116}	560
126	4.5	Eridani	22319.222	011	+ $2 \cdot 2000$	- -0033	+'0012	$\left\lvert\, \begin{array}{lll}-48 & 9 & 9 \cdot 32\end{array}\right.$	+ ${ }^{12}$	+16.240	- •195	-. 013	18	9'53	563
127	$6 \cdot 6$	27 Arietis	25 2I.488	-024	3.3209	+ .0165	+.0025	+171541.36	+ 91	16.051	-294	- .097	16	9×41	568
128	$4 \cdot 9$	76 Ceti................. σ	27 20.798	+.052	$2 \cdot 8419$	+ 0023	--0055	-1541 4 1.81	+1.10	15.927	$\cdot 254$	- 117	16:18	$9^{\circ} 42$	575
129	6	Foruacis ${ }^{\text {I }}$	$28.56 \cdot 836$	+.020	$2 \cdot 5016$	-0022	0026	$\begin{array}{llll}-35 & 5 & 23 \cdot 18\end{array}$	+ 15	15.940	- 227	-020	22: 24	$7 \cdot 76: 7.63$	579
130	6	Lacaille 799..........	3030.210	+.014	$2 \cdot 0438$	-0013	- $\cdot 0016$	-513153.21	+ 18	$15 \cdot 856$	-188	-021	19: 21	$8 \cdot 65: 8.43$	587
131	$6 \cdot 2$	Plazzi	$23036 \cdot 938$	-1'177	$+3 \cdot 2848$	+ -0123	+'1208	+624 49*01	-14.25	+17.335	- 310	+1.463	16	9'74	588
132	5	78 Ceti ...	$3037 \cdot 505$	+ .021	3.1439	-0103	-.0021	+ 5 924.77	+ 29	15.842	- 286	-.029	20:16	10'07:10'02	589
133	5.6	32 Arietis...............	33 8.149	+.006	$+3 \cdot 3984$	-0192	-•0006	+21 3144.66	+ 24	$15 \cdot 713$	- 313	-.023	17: 16	10'35: 10'28	597
134	$7 \cdot 9$	Lacaille 1884.........	$3313 \cdot 90$		-37.440	$29 \cdot 094$		-88 49 42.60	...	15.731	+3.377		37	11-62	...
135	$5 \cdot 5$	Hydri............... μ	$3347 \cdot 280$	- $\cdot 402$	- 1.3882	+ . 2507	+'0430	-79 $3244 \cdot 63$	+ $\cdot 28$	15.671	+ 115	- 030	33:35	$9.36: 9.44$	601
136	$5 \cdot 4$	Horologii η	$2346 \cdot 533$	- •077	+ 1.9765	-0002	+.0079	$-525833 \cdot 20$	+ 22	+15.661	- $\cdot 187$	- . 022	17 : 16	9'71:9.82	603
137	4^{11}	82 Ceti δ	34 21.358	- -007	$+3.0715$	+ .0082	+.0007	-0 610.08	- 01	15.670	- $\cdot 286$	+ .001	16	$10 \cdot 20$	604
138	$7 \cdot 8$	Lacaille 1029.........	35 30. 34	+ ${ }^{2} 2$	-9.450	+2.492	-021	-86 9 9 42'10	- .04	15.612	+.860	+ $\cdot 005$	41: 116	11.65: $8 \cdot 71$	N166
139	$4^{1 / 1}$	Eridani...............	$3643 \cdot 405$	- . 103	$+2.3673$	-0021	+.0106	$\begin{array}{llll}-40 & 17 & 0.07\end{array}$	+ 27	15.511	- 226	-.029	16: 19	9.67: $9 \cdot 22$	614
140	$5 \cdot 9$	34 Arietis μ	$3643 \cdot 578$	- $\cdot 023$	$3 \cdot 3750$	+ .0179	+.0022	+1935 7.11	+ 49	15.492	318	-.047	15	$10 \cdot 47$	615
141	$4 \times$	35 Arieti	$23734 \cdot 889$	- ${ }^{\circ} 003$	$+3.5101$	+ .0233	+•0003	+271654.08	+ 11	+15479	- 333^{1}	--013	16: 17	8.76:8.65	620
142	$4 \cdot 3$	Hydri................	$38 \quad 3.082$	- $\cdot 172$	-0.9086	-0334	+.0167	-68 41 $43 \cdot 67$	- 17	15.482	-092	+.016	16	10.30: 10.42	621
$143 \dagger$	$3 \cdot 5$	86 Cetiseq. γ	$3^{8} \quad 7 \cdot 022$	+.093	3.1044	-0092	-.0098	+ 24850.49	+ 1.43	$15 \cdot 312$	-294	-. 150	17	9.52	622
144	$4 \cdot 4$	89 Ceti.................. π	$3921 \cdot 780$	+.005	$2 \cdot 8539$	-0033	-.0005	-14 $16 \begin{array}{lll}6 & 15\end{array}$	+ 14	15.379	-273	-.014	16	10'19	627
145	4*3	87 Ceti μ	$3932 \cdot 277$	- 176	$3^{\cdot 2377}$	-0125	+'0190	+ $94130 \cdot 81$	+ 25	$15 \cdot 356$	-31 1	- -027	19:20	$9 \cdot 25: 9 \cdot 15$	629
146	$4^{* 8}$	39 Arietis	24157.219	- - 108	+ 3.5615	+ -0244	+.0115	+28 $4953 \cdot 65$	+1.18	+15121	- -344	- 125	16	9.43	634
147	$3 \cdot 5$	4I Arietis................	$445^{\circ} 75^{1}$	- .046	3.5214	+ $\cdot 0227$	+.0050	+26 5053.29	+ 98	$15^{\circ} \mathrm{OL1}$	- 344	- 113	18:21	9.11:8.67	643
148	$4 \cdot 5$	Fornacis. β	$4454 \cdot 389$	- -077	2.5121	- •0004	+.0079	-32 49 31'59	- I. 53	$15 \cdot 237$	- 248	+.160	17:18	9'76: $9 \cdot 58$	645
149	$5 \cdot 7$	43 Arietis............. σ	45 58.211	-.021	$3 \cdot 3062$	+ -0149	+-0021	+14 $4012 \cdot 23$	+ 33	$14 \cdot 9{ }^{8} 3$	326	--033	18: 16	$9 \% 4: 9.93$	648
150	$4 \cdot 9$	2 Eridani τ^{2}	46 30.107	$+.031$	+ $2 \cdot 7204$	+ .0017	-.0037		+ 10	14.973	-. 269	- .012	21:22	$8 \cdot 33: 8.07$	650

118. Nira. L, $1 \cdot 7-9 \cdot 6 ; \mathrm{P}, 331^{\mathrm{d}} 6$.
119. $3^{\circ} 5,7{ }^{\circ} 4 \quad 3^{\prime \prime}{ }^{\prime} 1 \quad 291^{\circ} \quad 1903^{\prime} 1$.

No.	Mag.	Name.	Mean R.A. $1900^{\circ} 0$.	$\mu_{a} \Delta \mathrm{E}$	Annual Variation 1900'0.	Sec. Var. $1900^{\circ} 0$.	Proper Motiou.	Mean Dec. $1900^{\circ} 0$.	$\mu_{\delta} \Delta \mathrm{E}$	Annual Variation $1900{ }^{\circ} \mathrm{O}$.	Sec. Var. 1900 o.	Proper Motion.	No. of Obs.	Epoch 1900+.	$\begin{aligned} & \text { Boss } \\ & \text { No. } \end{aligned}$
			$\begin{array}{llc} l \mathrm{ll} & \mathrm{~s} \\ 2 & 47 & 54 \cdot 87 \end{array}$			+1•766	s		"						
151 152	$7 \cdot 3$	${ }^{\text {L }}$ Lacaille 1076.........	24754.87 51 51		8.138 2.0289	+ 1.766 $+\quad .0050$		-852627.21 -9.1747 .50		+14.903	$\cdot 787$	215	26:47	11.61:10.08	
152	4.8	3 Eridaui	$5132 \cdot 553$	-. 050	$2 \cdot 9289$	+ .0050	+.0054	- $91747 \cdot 5^{\circ}$	+1.83	$14^{\circ} 474$	-297	- $\cdot 215$	30:24	$9.24: 8.49$	665
153		91	54 21.247	-006	3.2108	-0118	006	$3031 \cdot 96$	-06	14.514	329	-006	17:16	$9 \cdot 27$	679
154	$3 \cdot 5$	Eridani.........pr.pr θ	$5428 \cdot 178$	+ - 049	$2 \cdot 2741$	-0002	-0051	$-40{ }_{-42} 18 \cdot 79$	- 32	14.547	- 234	+.034	16	9•55	680
155	$5 \cdot 2$	Horologii............ ${ }^{\text {a }}$	56 54.354	-.003	1•1211	+ . 0214	+.0004	$\begin{array}{llll}-64 & 28 & 7 \cdot 95\end{array}$	- 25	14•393	120	+.028	20:19	$8 \cdot 73: 8 \cdot 79$	690
156	$2 \cdot 7$	92 Ceti	$257 \quad 3.072$	+ .008	$+3.1317$	+ .0097	- 0009	+ $34150 \cdot 32$	+ 70	+14.279	- 325	- '077	20: 19	9.08: 9*04	691
: 57	4.2	If Eridani............. $T^{\text {s }}$	57 58.864	+ 100	+ $2 \cdot 6446$	-0016	-. 0104	-24 0 0 59.69	+ 45	14.253	- $\cdot 275$	- $\cdot 047$	16	9•63	696
158	8.1	Lacaille 1203	$5855^{\circ} \mathrm{oS}$		- 11.349	$2 \cdot 743$		$\begin{array}{llll}-86 & 16 & 6 \cdot 71\end{array}$...	14.242	+1.158	...	19:32	$11.60: 9.88$	
159	$5 \cdot 9$	Lacaille 97	25930.773	- 025	+ $2 \cdot 0508$	-0011	+.0028	$\begin{array}{llll}-47 & 22 & 0.56\end{array}$	$+\cdot 13$	14.190	- $\cdot 217$	- -015	19:20	8.94:8.83	701
160	$5 \cdot 3$	Horologii........... μ	$\begin{array}{lllll}3 & 1 & 15 \% 303\end{array}$	+ $\cdot 091$	$1 \cdot 4083$	-0119	-0099	-60 7 7 $32 \cdot 33$	+ 61	$14^{\circ} \mathrm{O} 31$	-151	-. 066	17	9×19	706
161	$5 \cdot 7$	Hylri................ θ	$\begin{array}{llll}3 & 2 & 2.854\end{array}$	- - 0 -	+0.0950	+ .0715	+.0089	$\begin{array}{lllll}-72 & 17 & 34.63\end{array}$	- 32	+14.084	- 017	+.036	17: 18	9.03: 8.88	711
162	$8 \cdot 4$	Lacaille 1848.........	353.91	+.72	-35.548	20.085	--062	-88 $34 \quad 20.98$	+ 25	13.907	$+3.726$	-. 026	27:81	11.65:9*43	Nig8
163	$4^{\cdot 6}$	57 Arietis.............. δ	5 54.635	--091	+ 3.4233	-0171	+-0107	+19 2054.82	+.05	13.799	$\cdot 369$	-. 006	23: 25	8.51:8.06	718
$164 \dagger$	$5 \cdot 3$	94 Ceti.. seq.	$74^{\circ} 295$	- 127	$3 \cdot 0591$	-0077	+.0135	-13413.20	+ 52	13.638	333	-.055	17:18	9'39:9.38	722
${ }^{165}{ }^{\dagger}$	$6 \cdot 3$	Lacaille 1016. AB.	$855 \cdot 079$	- 074	2•1068	-0013	+.0085	-44 $4740 \cdot 22$	+ 04	13.608	-232	-.005	19:21	$8 \cdot 71: 8.47$	728
166	4*9	58 Arietis............... $¢$	$\begin{array}{llll}3 & 9 & 9.077\end{array}$	+ .017	$+3.4412$	+ 0178	-.0017	+20 4025.46	+ 75	$+13.523$	- 374	- -075	16	9*99	730
167	$6 \cdot 0$	Lacaille 1040	10 If101	- 013	1.5153	-0094	+.0015	-57 $4144 \cdot 85$	-.03	13.546	-169	+.004	21: 23	8.69:8.50	733
168	$7 \cdot 2$	Lacaille 1020.	10 $44 \cdot 189$	-.030	$2 \cdot 3592$	-0009	+.0030	-35 55 46.03	- 21	13.518	- 260	+.022	17:18	$9 \cdot 84: 9.53$	737
169	$5^{\circ} \mathrm{O}$	13 Eridani..............§	10 58.515	+.003	2.9120	-0055	- $\cdot 0003$	-9 $91127 \cdot 58$	- $\cdot 42$	13.525	320	+ 045	16	$9^{\prime} 27$	739
170	$5^{* 1}$	96 Ceti............... . к	$14 \quad 7 \cdot 081$	- 156	3.1426	-0095	+.0177	$+3013.56$	$-.83$	13.370	-351	+.094	16:17	$8 \cdot 80: 8.87$	75^{2}
171	6. 1	Lacaille 105	31411000	+ ${ }^{013}$	+ 1.9538	$+.0028$	5	$\begin{array}{llll}-48 & 7 & 4.96\end{array}$	- 13	+13.288	- 219	+ -017	19: 23	8.35: $7 \cdot 89$	754
172	$5 \cdot 4$	61 Arietis.	15 27.134	- 020	3.4565	+ .0174	+.002I	+20 47 II.65	+ $\cdot 27$	13.158	$\cdot 385$	-.030	21: 16	9'50: 9.08	761
173	$4 \cdot 4$	Eridani............. e	1558.415	-2.338	+ $2 \cdot 3994$	- 0005	+.2824	$\begin{array}{lll}-43 & 27 & 1.67\end{array}$	-6.07	13.904	- . 296	+ $\cdot 748$	19: 22	8.28: $8 \cdot 12$	764
174	$5 \cdot 7$	Hydri............... 4	1826.810	- 293	- I.5826	+ $\cdot 1927$	+.0347	-77 45 11•77	- $\cdot 55$	13.056	+ 166	+.066	36:42	$8.45: 8.39$	776
175	3.6	I Tauri 0	19 25.794	+.042	$+3.2238$	+ .0114	-.0045	+ $84036 \cdot 61$	+ 70	12.846	- 364	-.078	20:19 ${ }^{\circ}$	$9.33: 8.98$	778
176	37	2 Tau1................ ξ	32144×940	-.038	$+3 \cdot 2466$	+ .0116	+.0040	+ 9232.89	+ 38	+12.727	- 371	- 041	17:18	9'40: 9'25	784
177	$6 \cdot 7$	Lacaille	$2237 \cdot 288$	- .019	$2 \cdot 1442$	0020	+-0021	-41 5914×19	- 26	12.738	- 247	+ . 029	17:19	8.99:8.84	793
178	$5 \cdot 3$	4 Tauri................ s	$2456 \cdot 443$	+.005	3.2742	-0122	-0006	+10 5936.20	+ 16	12.533	-377	- .019	16:17	8.56: $8 \cdot 66$	801
179	$4 \cdot 4$	5 Tanti.................f	25 21.053	-.009	3.3067	-0129	+.0012	+123538.93	+ .03	12.520	-382	-.004	21:25	7'18: 7.08	804
180	$6 \cdot 3$	Lacaill	27.24 .527	-.068	I.9248	-0036	+.0082	-47 $42 \begin{aligned} & \text { 59.68 }\end{aligned}$	- 13	12.399	-227	+.016	19:21	$8 \cdot 33: 8 \cdot 23$	811
181	4*9	Reticuli.	$32738 \cdot 263$	-. 494	$+1.0362$	+ .0228	+.0542	$\begin{array}{llll}-63 & 17 & 20.03\end{array}$	-3.30	+12.737	-130	+ 369	19	9'12: 8*94	812
182	$3 \cdot 7$	18 Eridani..............e	$2812 \cdot 542$	+.575	$2 \cdot 8247$	-0056	-. 0657	- $94747 \cdot 89$	- 11	12.340	-322	+-013	21: 19	8'75: $8 \cdot 25$	814
183	$4 \cdot 3$	19 Eridani............. T^{5}	$2922 \cdot 248$	-.026	2.6489	-0030	+.0028	-21 58 5 68	+ -19	$12 \cdot 227$	311	-.020	20: 21	$9^{\prime} 17: 9 \times 33$	816
184	$5 \cdot 8$	Lacaille I 144.........	$2935 \cdot 857$	-.059	$1 \cdot 7845$	-0053	+-0066	-50 43 3.50	- $\cdot 76$	$12 \cdot 318$	212	+.086	19: 21	8.89: 8.80	818
185	4.4	10 Tauri	$3545 \cdot 980$	+ 141	$3 \cdot 0583$	-0076	--0156	+○ 459.48	$+4.37$	11.599	359	-. 482	16	$9^{\circ} 06$	825
186	4.6	ridani y	$33330 \cdot 340$	+.006	$+2.1522$	+ .0023	-.0007	$\begin{array}{llll}-40 & 36 & 9 & 53\end{array}$	+ 36	+11.916	- : 257	- •043	21: 23	$8 \cdot 36: 8 \cdot 32$	827
187	$5 \cdot 8$	Brisbane 593.........	33 37•084	+.032	-2.2950	- 2315	-.0040	-78 411119	+ 22	11.923	+ ${ }^{2} 26$	-.028	48:49	8.04: 7 '95	828
188	$6 \cdot 2$	II Tauri	$3447 \cdot 827$	- 010	$+3.5758$	- 0188	+.0011	+25 0-22.23	+ 14	11.853	- 425	-.015	18	9.25	836
$189 \dagger$	3.8	3^{8} Persei............m. ©	$3^{88} \quad 2 \cdot 747$	- .007	$3 \cdot 7524$	-0233	+.0008	$+3^{1} \quad 58 \quad 17 \cdot 63$	+ 20	11.614	-450	-. 024	21:22	$8 \cdot 50: 8.40$	844
190	5^{11}	Fornacis δ	$3816 \cdot 220$	+.003	$2 \cdot 3847$	-0023	-.0004		- .06	11.629	- 288	+.007	20:21	8.03:7.94	846
191	$3 \cdot 7$	23 Eridani............. δ	$33^{8} 27 \cdot 370$	$+\cdot 057$	+ 2.8719	+ -0062	-.0063	-10 5159.94	-6.77	+12.352	- 346	' ${ }^{\text {'743 }}$	18: 19	9.11	848
192	$3 \cdot 8$	17 Tauri.	$3856 \cdot 142$	- 014	3.5550	-0177	+.0014	+23 $4755 \cdot 81$	+ 50	11.525	$\cdot 428$	- .050	16	9.97	852
193	$2 \cdot 8$	25 Tauri............... η	$4132 \cdot 306$	-.010	3.5588	-0175	+-0014	+23 $4745 \cdot 36$	+.34	$11 \cdot 340$	432	- 048	23.	7'27:7111	869
194	4.3	27 Eridani............ τ^{6}	$4232 \cdot 622$	+ 105	$+2.5798$	-0025	-.0118	$-233^{2} 47{ }^{\circ} 03$	$+4.63$	10•792	-.314	- 523	19:18	8.87: 8.86	873
195	8.1	Lacaille 1	$4237 \cdot 13$		-9.659	1.430		$\begin{array}{llll}-85 & 2 & 47 \cdot 76\end{array}$		11.310	+1.158	...	36:53	11.60: 10.31	
196	$3 \cdot 8$	Reticuli............ β	$34^{2} 57 \cdot 046$	- $\cdot 437$	+0.7377	$+.0282$	+.0472	$\begin{array}{llll}-65 & 7 & 16 \cdot 51\end{array}$	- . 68	+11.359	- 099	+ -073	17	9*25	875
197	$3 \cdot 7$	27 Tauri..................	$4312 \cdot 866$	-.013	3.5601	-0173	+.0014	+234451.50	+ $\cdot 43$	11.217	-434	- .050	17:19	9.04: 8.69	877
198	$5^{\circ} 2$	28 Eridani............. τ^{7}	43 21.615	-.032	$2 \cdot 5789$	-0030	+.0032	-24 1113.42	- 54	$11 \cdot 310$	316	+.054	16:17	9:94:901	880
199	4.2 2.8	Eridani..............g	$4542 \cdot 692$	+.029	$2 \cdot 2441$	-0025	-.0042	-36 30 10.96	+ 35	11.036	-277	-.050	26:28	6.98: 6.94	888
200	$2 \cdot 8$	44 Persei................ ς	$4750 \cdot 619$	- $\cdot 009$	$3 \cdot 7622$	-0220	+.0010	+31 $35 \quad 12 \cdot 34$	+ 14	10.913	-464	-.017	20: 22	8.50: $8 \cdot 45$	894

No.	Mag.	Nam	Mean R.A. $1900^{\circ} 0$.	$\mu_{a} \Delta \mathrm{E}$.	Annual Variation 1900°.	Sec. Var. 1900°.	Proper Motion.	Mean Dec. $1900^{\circ} 0$.	$\mu_{\delta} \Delta \mathrm{E}$.	Annual Variation 1900'0.	Sec. Var. 19000	Proper Motion.	No. of Obs.	Elpoch $1900+.$	Boss No.
				${ }^{\bullet} \cdot 088$		${ }^{\text {s }} 1071$	10								
201	3.1	Hydri γ	$34847 \cdot 080$	$\cdot 088$	-0.9798	+ .1071	10	$74 \quad 3242 \cdot 84$	- 92	+10.977	+ ${ }^{115}$	+ 116	21: 22	8.01:7.92	899
202	$5 \cdot 3$	Eridani..............i	49 50.317	24	+2.2854	0026	028	$35140 \cdot 31$	+ 15	$10 \cdot 765$		-. 018	16:17	$8.43: 8.53$	903
203	$6 \cdot 4$	Lacaille	5156.348		I•5695	78		52 58 54.90		10.628	198		20: 22	$7 \cdot 4^{8}: 7 \cdot 3^{2}$	N249
204	4^{11}	46 Persei............... ${ }^{\text {\% }}$	$5228 \cdot 422$	'010	3•8830	-0245	+.0011	+35 3013.55	- II	$10 \cdot 576$	485	12	16:17	8.97: 9.03	913
205	$3^{\cdot 1}$	34 Eridani	$5321 \cdot 847$	- 040	$2 \cdot 7977$	-0045	+•0046	-13 $4735^{\circ} 51$	+ 97	$10 \cdot 410$	352	- 112	22: 24	8.62	915
206	var.	35 Tauri	3558.330	+ ${ }^{\circ} 003$	+ 3.3192	+ -0114	-.0004	+12	12	+10.375	-418	- 014	21:23	$8.03: 8.28$	920
207	$7 \cdot 4$	Lacaille	55 23.356	- .014	I.7160	06I	+.0017	-49 53 45:66	26	10.403	19	+.032	20	7×99	922
208	$4 * 7$	36 Eridani............. τ^{9}	5539.657	- 005	$2 \cdot 5562$	0032	+.0006	-24 17-59.15	03	10'354	4	+.004	18:20	$8 \cdot 76: 8.47$	923
209	$4 \cdot 5$	Reticuli............ δ	$57 \quad 9.695$	\%	0.9406	-0194	+.0007	-61 $4057 \cdot 14$	18	10.219	122	019	16	9-55	930°
210	$4^{\circ} 0$	38 Tauri ${ }^{\text {, }}$	57 50.160	- 01	3.1876	-0092	+.0001	+ 54243.25	05	10.180	4	007	23:26	7 95 : 7 '61	932
211	$4 \cdot 5$	37 T	$35846 \cdot 953$	-.063	+ 3.5407	+ -0151	+.0067	+214831.25	+ 60	10.052	-451	-.064	17	$9 \cdot 35$	936
212	$5 \cdot 3$	42 Taur	$4 \quad 049 \cdot 342$	+.055	3.7019	-0187	062	+28 4351.24	- 03	9.964	472	+.003	17	8.82	944
213	$5 \cdot 7$	L	130.207	- 100	2.4713	-0031	+-0147	-27 55 30 $0^{\prime} 79$	- 70	10.013	-319	+.103	26:29	$6 \cdot 83: 6.77$	948
214	$5 \cdot 9$	43 Taur	$320 \cdot 395$	-.065	3.4895	-0136	+.0075	+19 2041.51	+ 39	$9 \cdot 726$	-449	- . 043	19:22	8.70: $8 \cdot 96$	952
215	$5 \cdot 6$	44 Tauri............... p	444319	+ 018	$3 \cdot 6470$	- 0168	0020	+26 13 11.97	+ 33	$9 \cdot 625$	-470	-.037	16	$8 \cdot 95$	955
216	$6 \cdot 7$	Lacail	$4 \quad 5 \quad 27 \times 789$	49	+ 1.8593	+ $\cdot 0047$	+•0071	$\begin{array}{llll}-46 & 7 & 44^{\circ} 29\end{array}$	- 06	+9.616	- $\cdot 243$	+.009	25:26	.94: 6.92	959
217	$4^{\circ} 2$	38 Eridaui.............0 ${ }^{1}$	6 59.001	- -005	2.9263	-0058	06	- $7 \quad 5533^{\circ} \mathrm{OI}$	61	9.571	380	+ 0 osi	20:22	7•58: 7-47	963
$218+$	$5{ }^{2}$	39 Eridanipr. A	$938 \cdot 220$	+ 006	$2 \cdot 8519$	49	8	-10 $3017 \cdot 87$	+ 1.27	9.128	372	- 157	16	8.10	978
219	4.4	49 Tauri................ μ	$106 \cdot 193$	- 017	$3 \cdot 2544$	-0094	+'0019	+ $83830 \cdot 59$	+ 18	$9 \cdot 229$	26	- 020	16	8.8I	981
220	$4 \cdot 5$	40 Eridani............ 0^{2}	1038.714	+I*439	2.7611	016		-7493*OI	$+32.53$	5*770	42	$-3 \cdot 435$	21: 18	9'70:9'47	984
22 I	3.8	Horologii............a	41041.294	-	+ I•9865	+ .0035	+.0037	-42 $3^{32} 288^{\circ} 31$	+1.51	$+8.988$	262	- $\cdot 215$	26:28	$7 \cdot 07: 7 \cdot 00$	85
22	$3 \cdot 3$	Reticuli α	13 8.128	. 044	0.7624	-0215	+.0054	-62 $43 \quad 26 \cdot 36$	- ${ }^{18}$	9.071	104	+.059	19	8.	994
223	$4 \cdot 4$	Dora	1324.426	- 069	I. 5675	-0079	+.0098	-51 $4418 \cdot 07$	- I. 26	$9 \cdot 171$	209	+.180	21:22	7-00:6.98	$¢ 95$
224	$5 \cdot 2$	54 Persei	1354.903	+.023	$3 \cdot 8863$	20	-.0025	+34 $1931 \cdot 57$	+ 14	$8 \cdot 937$	10	-. 015	16	$9 \cdot 27$	999
225	3.8	54 Tauri............... γ	14 6.143	-.072	$3 \cdot 4097$	- 0113	+.008I	+15 $2310 \cdot 20$	+ $\cdot 23$	8-910	450	- .027	21	$8 \cdot 93: 8 \cdot 66$	1000
$226 \dagger$	$3 \cdot$	4 I Eridan	4146.650	- "042	+2	+ .0031	0047	$\begin{array}{llll}-34 & 2 & 32 \cdot 54\end{array}$	+ .03	$+8.933$	- 300	-.003	16	8.96	1001
227	$5 \cdot 5$	Lalande	1617.277	21	$2 \cdot 6170$	-0037	0031	-20 52 4I'18	+ .03	8.760	347	-.005	26:28	$6 \cdot 84: 6.72$	1012
228	$4^{\circ} \mathrm{O}$	6I Tauri................ δ	17 10.051	61	$3 \cdot 4553$	18	+.0077	+17	+ 26	$8 \cdot 663$	458	-. 033	25:28	7'88:7.91	1017
229	4.4	68 Tauri	1942.230	1	$3 \cdot 4661$	0117	+.0075	+174157.04	+ 20	$8 \cdot 47 \mathrm{I}$	462	-.025	17	8.09	1029
230	$4^{\circ} 0$	43 Eridan	$2016 \cdot 83 \mathrm{I}$	- -033	$2 \cdot 2517$	0033	0045	-34 14 55.80	- ${ }^{40}$	8.505	-30	+.055	21:23	731: 7 '26	1032
231	$5 \cdot 3$	Reticuli............. η	$42048 \cdot 442$	- •107	+0.6383	+ 0237	+-0125	$\begin{array}{llll}-63 & 37 & 23 & 54\end{array}$	- I• 5^{2}	$+8.585$	- .090	+ ${ }^{177}$	19:20	8.59:8.58	1035
232	$3 \cdot 6$	74 Tauri	$2246 \cdot 613$	-.069	3.4988	-0119	+.0080	+185731.22	+ 32	8.213	-469	-.038	23:22	$8 \cdot 63: 8 \cdot 30$	1044
233	$5 \cdot 4$	Coli δ	27 46.325	+.002	I $\cdot 8351$	-0048	- $\cdot 0003$	-45 10 6.00	+ 09	$7 \cdot 839$	- 250	012	21: 22	777: 7'69	1066
234	$4 \cdot 8$	86 Taurip	2810.404	- $\cdot 056$	$+3.4006$	- 0100	+-0069	+14383.04	$+\cdot 21$	7•793	- 46 t	- . 026	17	8.10	1067
235	$7 \cdot 9$	Lacail	29 8.41		-17.030	$2 \cdot 287$		$\begin{array}{lllllllllll}-86 & 29 & 26\end{array}$		$7 \cdot 741$	+2.287		23:30	11.46:10.28	
236	0.9	87 Tauri................a	$43010 \cdot 930$	- 035	$+3.4385$	+ 0102	+•0048	+16 $18 \quad 28 \cdot 58$	+ 1.40	$+7.466$	- $\cdot 467$	- •191	22	$7{ }^{1} 1$	1077
237	$4^{\prime \prime} 1$	48 Eridani..... ${ }^{\text {c }}$	3119.298	-000	2.9954	-0058	-0000	- $33324^{\circ} 9^{2}$	+ 02	$7 \cdot 563$		- 002	19:17	$9 \cdot 4$ S : $9 \cdot 3$	1079
238	$3 \cdot 8$	52 Eridani............v ${ }^{2}$	$3139 \cdot 698$	+ 043	$2 \cdot 3305$	-0032	-•0046	-30 $46 \begin{array}{ll}1 \cdot 33\end{array}$	+ 04	$7 \cdot 533$	18	00	18	$9 \cdot 29$	1080
239	3.4	Dora	$3150 \cdot 121$	- 061	I•2926	-0097		-55 15 5\%70	+ .02	7.521	-79	- 002	16	$10 \cdot 04$	1081
240	$4^{\circ} \mathrm{O}$	53 Eridan	33 35.972	+.050	$2 \cdot 7456$	0040	- 0054	-14 29 59.36	+ 1.51	7.219	374	- 16	18	$9 \cdot 35$	1091
241	6.9	,	$\begin{array}{llll}4 & 34 & 3.907\end{array}$	18	+ 1.9517	+ .0042	+'0020	-42 $4288^{\prime} 18$	-41	$+7 \cdot 388$	- . 268	+.046	17	8.96	1094
242	$7 \cdot 1$	Lacaille I7	34 29.03	+ ${ }^{13}$	- 7. 246	- 527	-.011	$\begin{array}{lll}-83 & 6 & 55 \cdot 59\end{array}$. 08	$7 \cdot 317$	+ $\cdot 982$	+.009	$38: 168$	II 49 : $8 \cdot 50$	1096
243	$5 \cdot 8$	Lacaille	35 57'193	+ 040	+ 2.4942	-0034	-0049	-24 $4040 \cdot 11$	- 15	7-207	. 342	+-019	17	8.15	I 104
244	$4 \cdot 3$	94 Tauri	3614.498	-.003	3. 5965	-0119	+-0004	+22 4554.55	+ 17	$7 \cdot 142$	-493	-22	27:28	$7 \cdot 69: 7 \cdot 67$	1107
$245{ }^{+}$	$4 \cdot 6$	Coeli.	37 20.277	+ 106	I.9312	-0040	-.0130	$\begin{array}{lllll}-42 & 3 & 17.07\end{array}$	+ 73	$6 \cdot 985$	-265	- .089	20	8.18	1110
246	$5 \cdot 4$	toris............. λ	44012.535	+.035	+ I.534I	+ .0068	-.0050	-50 $40 \quad 9 \cdot 29$	- 22	$+6.870$	$\cdot 2$	+.031	23	7.07:7.24	1119
247	$4 \cdot 2$	57 Eridani............. μ	$4030 \cdot 105$	- 011	2.9981	- 054	+.0013	-32616.56	+ 08	$6 \cdot 805$		--01	34:35	8.10: $8 \cdot 01$	1123
248	$5 \cdot 5$	Doradûs.............k	4250.589	- 005	+0.8955	-0141	+.0007	-59 $54 \quad 57 \cdot 73$	- 26	$6 \cdot 659$	- $\cdot 126$	+.037	22	7.11:7.08	1130
249	$5 \cdot 9$	Mensæ μ	$44 \quad 3.621$	+ ${ }^{\circ} 003$	-0.6222	-0477	-*0004	-71 6 51.21	- $\cdot 24$	$6 \cdot 553$	+.083	+.031	20: 22	$783: 7$ 80	1138
25°	$3 \cdot 2$	I Orionis............. $\mathrm{\pi}^{3}$	4424.913	- $\cdot 265$	$+3.2544$	-0071	+•0316	+ $64712 \cdot 04$	- 16	$6 \cdot 513$	-. 456	+ ${ }^{\text {c }}$ - 20	19:18	8:40:8.21	1140

No.	Mag.	Name.	Mean R.A. 1900°.	$\mu_{\alpha} \Delta \mathrm{E}$	Annual Variation 1900°.	Sec. Var. 1900ㅇ..	Proper Motion.	Meaц Dec. 1900°.	$\mu_{\delta} \Delta \mathrm{E}$	Annual Variatiou 1900\%.	Sec. Var. $1900^{\circ} 0$.	Proper Motion.	No. of Obs.	Epoch $1900+$	$\begin{aligned} & \text { Boss } \\ & \text { No. } \end{aligned}$
			$\begin{array}{ll}\mathrm{h} ~ \mathrm{~m} & 8 \\ 4 & 45\end{array}$												
251	$5^{\circ} 2$		445310421		$+3 \cdot 5062$	+ .0097		+ 5263.34	-	5	- 488	-036	18:19	$8 \cdot 40: 8 \cdot 30$	143
252	3.8	3 Orionis............. π^{4}	45 52.757	+ . 002	$3 \cdot 1926$	-0067	- 0000	$+5263.34$	+ 04	$6 \cdot 365$	444	-006	26	$6 \cdot 77$	1147
253	5.1	4 Orionis ${ }^{1}$	4652.460	-000	$3 \cdot 3907$	-0083	-0000	$\begin{array}{llll}14 & 5 & 1.83\end{array}$	+ 48	$6 \cdot 229$	472	- 059	16	$8 \cdot 22$:149
254	$3 \cdot 8$	8 Orionis............. π^{5}	49 2.506	+.001	3.1228	-0060	-0002	$+21637 \cdot 27$	+ 02	$6 \cdot 105$	-436	- $\cdot 003$	25:26	7.02:6.88	1159
255	4.8	7 Orionis............. π^{1}	4923.423	-.030	$3 \cdot 3004$	-0072	+.0037	+ 95929.73	+ I.08	5*945	-462	-134	22:23	$8.08: 8.06$	1163
256	$2 \cdot 8$	3 Aurigx........... ...t	$45028 \cdot 785$	- $\cdot 005$	$+3.9016$	+ -0141	+.0007	+33 - 28:90	+ 19	$+5.961$	- . 545	- 027	23: 24	$7^{\circ} 03$: $7^{\circ} 00$	1167
257	$5 \cdot 9$	98 Tauric.............. k	$52 \quad 2.119$	- .018	$3 \cdot 6677$	- oros	+'0022	+2453 $45^{\circ} 91$	+ 48	5•798	-514	- . 060	21:22	$8 \cdot 00: 7.97$	1177
258	$4 \cdot 8$	102 Tauri.................	$57 \quad 7 \cdot 063$	-.033	$+3.5825$	-0092	+-0048	+21 2649.95	+ 32	$5 \cdot 385$	- 506	-.047	26:27	6.88: $6 \cdot 86$	1194
259	$5 \cdot 4$	Mensæ... η	$58 \quad 3 \cdot 490$	- 019	- 1.7626	-0726	+'0023	-75 5 25\%91	- $\cdot 44$	$5 \cdot 406$	+ ${ }^{2} 245$	+.054	21:22	8.06	1197
260	$4 \cdot 8$	II Orionis.	$45^{8} 51 \cdot 215$	-. 011	$+3.4255$	-0076	+.0013	+15 1553.32	+ 31	5.249	-. 484	-.036	19:20	$8 \cdot 57: 8.55$	1203
261	$5 \cdot 6$	Pictoris η^{2}	5 O II•687	$+.038$	+ 1.5659	+ .0056	--0056	-49 17 $733 \cdot 86$	- 09	+ $5 \cdot 185$	- 222	+ ${ }^{-13}$	22	$6 \cdot 72$	1207
262	$3 \cdot 2$	2 Leporis..............є	113.642	-.015	2. 5386	-0031	+-0019	-22 3019.60	+ 54	$5 \cdot 018$	-360	- 066	23:25	$7.93: 8.08$	1211
263	$5^{\circ} \mathrm{O}$	Pictoris............. η^{2}	222.572	-. 024	1.5488	- 005	+.0035	-49 $\mathbf{4}^{2} 47 \times 96$	- .05	4.995	-221	+.007	20	$6 \cdot 85$	1218
264	2.8	67 Eridani............. β	255.931	+.052	$2 \cdot 9482$	-0043	-.0059	- $\mathbf{5}^{12} 577^{\prime} 3^{6}$	+ 70	4.861	-418	- .079	19	$8 \cdot 84$	1220
265	$4 \cdot 8$	Doradûs 5	$347 \cdot 668$	+.045	+1.0233	- 0101	-.0054	-57 $3^{6} 3$ 3r 83	- $\cdot 88$	4.972	- 146	+ 105	20: 22	$8 \cdot 40: 8 \cdot 37$	1225
266	$5 \cdot 4$	Mensæ β	$\begin{array}{llll}5 & 4 & 0 & 390\end{array}$	+-018	- 0.7945	-0398	- 0022	$\begin{array}{llll}-71 & 27 & 2.92\end{array}$	- 38	$+4.896$	+ 110	+ 047	19	8.13	1228
267	4*3	69 Eridani λ	4 21.621	-002	+2.8698	-0040	+.0002	-8 $5^{2} 55^{6 \cdot 18}$	+ .06	4.811	- $\cdot 408$	-.008	23	7'76	1231
268	$3 \cdot 2$	5 Leporis.............. μ	$826 \cdot 349$	-.023	2.6936	-0033	$+\cdot 0028$	-16 1926.02	+ 22	4*444	$\cdot 385$	-.028	27:26	8-11:793	1241
269	0.0	19 Orionis.............. β	943.915	- $\cdot 001$	$2 \cdot 8817$	-0039	+.0001	-819 1.71	+ -01	4*361	412	- . 01	31:32	711:7.07	1250
270	$3 \cdot 7$	20 Orionis.............. τ	$1245 \cdot 028$	+ 008	+2.9117	-0039	- $\cdot 0011$	-6 57 8.88	+ .05	4*097	- ${ }^{117}$	- 0007	24:26	7'20:719	1262
271	$4 \cdot 8$	Doradûs θ	51349.895	+ 008	-0.0586	+ .0210	-0010	-67 17 51.91	- 36	$+4.059$	+.007	+-048	21	$7 \cdot 60$	1269
272	$5^{\circ} \mathrm{O}$	Columbæ.. 0	1352.724	- 05	+2.1622	-0024	+.0065	-34 59 37.63	$+2.81$	$3 \cdot 661$	- 311	- 346	20	8.12	1270
273	7.8*	Cape 1880. 2449......	1356.57	...	$-34 \cdot 228$	3.972		-87 59 21:25		4.002	+4.888		31:41	1143 : $10 \cdot 68$	
274	4.3	6 Leporis λ	1458.045	-000	$+2.7630$	-0034	- 0000	-13 $1648 \cdot 07$	- . 03	$3 \cdot 917$	- 397	+.003	16	8.43	1277
275	5'9	Lacaille 1796.........	1524.505	+ 006	$2 \cdot 3898$	-0029	- $\cdot 0008$	-27 $28817 \cdot 74$	+ 10	$3 \cdot 862$	- 343	- 014	22:23	$6.97: 6.93$	1279
276	$4 \cdot 7$	22 Orionis........... .. 0	51639.407	+.003	$+3.0610$	+ .0042	-. 0003	- 02852.03	+ .03	$+3.766$	- . 440	- 003	27:28	8.62:8.59	1284
277	$5 \cdot 7$	Pietoris \qquad	1654.929	-.004	I.4681	-0059	+.0006	-50 $4^{2} 4^{6} \cdot 73$	-1.62	3.963	$\cdot 212$	+.216	25:26	$7 \cdot 44: 7 \cdot 48$	1287
278	$7 \cdot 2$	Lacaille 1836.........	19 1.722	-.024	1.4124	-0055	+ 0037	$-514020{ }^{\circ}$	-15	3.588	-205	+.023	23:24	6.44: 6.41	1298
279	$4 \cdot 9$	25 Orionis.................	1933.342	+ $\cdot 005$	3*1119	-0042	-.0007	+14517.39	+ 14	$3 \cdot 501$	- 448	- .018	18:19	$7 \cdot 76$	1302
280	1.6	24 Orionis.............. γ	$1946 \cdot 018$	+.004	3.2162	-0046	-.0005	+ $61532 \cdot 91$	+ 14	$3 \cdot 482$	-463	- .019	20:22	$7 \cdot 81: 7.61$	I 303
281	1.6	112 Tauri............... β	$51958 \cdot 197$	- $\cdot 020$	$+3.7900$	+ 0^{0076}	+ ${ }^{\text {co22 }}$	+28 $3121 \cdot 69$	+1.48	$+3.307$	- . 546	- ${ }^{177}$	19	$8 \cdot 35$	1304
282	$6 \cdot 1$	Lacaille $1850 .$.	2156.903	+.010	$1 \cdot 7840$	-0037	-.0014	$-44 \begin{array}{llllllllll}-48\end{array}$	+ 04	3.308	$\cdot 258$	-.005	29:30	7•10:7'14	1317
283	$6 \cdot 1$	Lacaille 1862.........	23 52.739	+ 006	1.9229	-0035	-.0009	-41 1 $46 \cdot 78$	-.62	3.234	-278	+ .088	26': 27	$7 \cdot 04: 7 \cdot 02$	1322
$284 \dagger$	$2 \cdot 7$	9 Leporis.........seq. β	2357.584	- -003	$2 \cdot 5703$	-0027	+.0004	-20 $5021 \cdot 40$	+ 64	3.045	-372	-.094	25	$6 \cdot 81$	1323
285	$4 \cdot 9$	25 Aurige.............. χ	2613.070	$\cdot .004$	3.9027	-0076	+.0005	+32 7 5.69	+ 13	2.928	- 563	-.016	20: 19	8.14:8.18	1333
286	$2 \cdot 2$	34 Orionis............. δ	52653.838	- 001	$+3.0638$	+ .0036	- 0001	- $02223^{\circ} 26$	+ 02	+ 2.882	- . 443	-.003	27:28	$7 \cdot 37: 7 \cdot 38$	1339
287	$5 \cdot 7$	Lacaille 1888.........	2724.497	+ 003	I.6458	$\cdot 0035$	- 0004	-47 8189.60	+ 1.13	2.688	- 238	- 153	20	$7 \cdot 40$	1341
288	3.9	Columbæ......... .e	27 39.746	-.019	2. 1292	$\text { - } 0028$	+.0022	-35 $32 \begin{array}{ll} & 37 \cdot 69\end{array}$	+ 42	$2 \cdot 770$	$\cdot 309$	-. 049	18: 19	$8 \cdot 60$	1344
289	$2 \cdot 6$	II Leporis..............a	28 19*155	- •ool	$2 \cdot 6451$	-0029	+.0001	-17 $5337 \cdot 65$	- .02	$2 \cdot 765$	$\cdot 383$	+.003	20	$7 \cdot 42$	1347
290	$4 \cdot 5$	37 Orionis ϕ^{1}	2919.805	+ $\cdot 001$	3.2920	-0042	- 0001	+ 92518.96	+ .06	$2 \cdot 667$	$\cdot 477$	-.008	23	$7 \cdot 25$	1353
291	$5 \cdot 2$	43 Orionis............. θ^{2}	53028.219	-007	$+2.9460$	+ .0032	+.0009	- $52854{ }^{\circ} 54$	'11	+ $2 \cdot 591$	- 427	+ 015	18: 19	7×35	1365
292	2.9	44 Orionisi	$3032 \cdot 451$	- 002	$2 \cdot 9338$	-0032	+.0002	- $55^{8} 31^{\circ} 73$	+.03	2. 566	-425	- $\cdot \infty$	20	7.93:784	1366
293	1.6	46 Orionis..............	318.332	-000	3.0430	-0034	-0000	- 11556.67	+ 02	$2 \cdot 516$	-441	- 002	19	$8 \cdot 16$	1370
294	3.0	123 Tauri δ	$3140 \cdot 049$	- $\cdot 002$	$3 \cdot 5838$	-0051	+.0002	+21 $453 \cdot 84$	+ 23	$2 \cdot 444$	- 519	-. 028	20:22	$8 \cdot 30: 8.09$	1375
295	3.8	Doradûs β	$3245 \cdot 336$	+.009	0.5161	- 0091	-.0011	$\begin{array}{llll}-62 & 33 & 18 \cdot 47\end{array}$	- II	2.391	$\cdot 076$	+-014	20	$7 \cdot 90$	1384
$296 t$	3.8	48 Orionis..........m. σ	$53343^{\circ} 531$	$\cdot 000$	$+3 \cdot 0107$	$+\cdot 0032$		$\mid-23927 \cdot 73$	$-\quad 01$	$+2 \cdot 294$		+ -001	26:27	6.80:6.77	1389
297	$5 \cdot 2$	Meusø \qquad . γ	$35 \quad 50 \cdot 608$	-207	$-2 \cdot 4001$	$\cdot 0459$	$+\cdot 0263$	$-76 \quad 2442 \cdot 08$	$-2 \cdot 34$	2.410	+ 343	+.301	40	$7 \cdot 88: 778$	1400
298	2.6	Columbæ.............a	$3^{6} \quad 1 \cdot 641$	$-.002$	$+2.1718$	$\cdot 0027$	$+\cdot 0003$	$\begin{aligned} & -34 \quad 738 \cdot 20 \end{aligned}$	$+\quad .24$	$2 \cdot 058$	-316	$-.035$	28:31	$6.93: 6.94$	1401
299	3.7	13 Leporis............... γ	$40 \quad 17 \cdot 483$	$+\cdot 137$	2.5012	-0020	-.0201	$-22 \quad 28 \quad 53^{\circ} 91$	+2.58	$1 \cdot 346$	-36!	-.376	32:34	6.81: $6 \cdot 86$	1420
300	$6 \cdot 6$	Lacaille 1981.........	$4050 \cdot 875$	$-\quad .08$	$1 \cdot 7002$	-0035	+.0011	-45 $\mathbf{5}^{2} \quad 42 \cdot 3 \mathrm{I}$	- 6.62	$1 \cdot 761$	- 248	+.088	26	$7 \cdot 08$	1421

311. L, 0.6-1'I ; P, irregular.
325. Lacaillo's R.A. is I^{h} too small. The fictitious μ Doradûs.
331. L, 3.2-4.2; P, 233.

33I. Var. $8 \cdot 8$; close hinary.
340. Magnitude from Harvard Annals, vol. l.

No.	Mag.	Name.	Mean R.A. $1900^{\circ} 0$.	$\mu_{\alpha} \Delta \mathrm{E}$.	Annual Variation $1900^{\circ} 0$	Sec. Var. 1900 ${ }^{\circ}$.	Proper Motion.	Mean Dec. $1900^{\circ} 0$.	$\mu_{\delta} \Delta \mathrm{E}$.	Annual Variation 1900°.	Sec. Var. 1900\%.	Proper Motion.	No. of Obs.	Epoch $1900+$.	$\begin{aligned} & \text { Boss } \\ & \text { No. } \end{aligned}$																																												
			$\begin{array}{ll}\text { h m } \\ 6 & \\ \text { c }\end{array}$	${ }^{8}$																																																							
35^{1+}	$5 \cdot 2$	15 Monocerotis......seq.	$63528 \cdot 249$	'001	$+3.3051$	0012	002	+95917.60	$\cdot 05$	-3.097	- 475	- $\cdot 007$	32:35	7’16:7.24	1706																																												
352	3	27 Geminorumє	37 46•767	-00	3.6936	- .003 ${ }^{8}$	-0000	+25 $1348 \cdot 93$	+ 14	3.310	530	--020	30	6•99	1717																																												
353	$6 \cdot 9$	Brisbane 5331.	$\begin{array}{lll}38 & 4 \cdot 203\end{array}$	+.007	$1 \cdot 6317$	+ 0007	-0009	-47 $3135 \cdot 17$	- 08	$3 \cdot 304$	233	+.011	32:34	7'28:7*20	1719																																												
354	$3 \cdot 3$	31 Geminorum $\boldsymbol{\xi}$	39 40. 556	+.055	3.3686	- .0022	-.0078	+13 0 11.51	$+1.42$	$3 \cdot 654$	481	201	23: 26	$7 \cdot 10: 7$ 05	1725																																												
355**	-2.0	9 Canis Majoris......a	$4044^{\cdot 167}$	$+.257$	2.6441	- . 0008	-.0366	-16 34 51.93	+8.43	4.75I	- 372	-I. 206	38: 39	$7{ }^{\circ} 03: 6.99$	1732																																												
356	$4 \cdot 8$	18 Monoceratis.	$6423^{8 \cdot 767}$	+.003	$+3 \cdot 1298$	- $\cdot 0008$	- 0004	+23117*99	+ 17	-3.734	-447	-.025	42: 44	6.94:6.93	1740																																												
357	$3 \cdot 8$	13 Canis Majorisk	$46 \quad 6 \cdot 286$	+.006	2.2407	+ .0014	-.0008	-32 $23 \begin{array}{llll} & 34 & 5\end{array}$	- - 01	4.005	-318	+ 001	34: 35	7×05	1761																																												
358	$3 \cdot 6$	34 Geminornm θ	$46 \mathrm{II} \cdot \mathrm{S61}$	- $\cdot 003$	$3 \cdot 9588$	- 0075	+.0005	+34 $454 \cdot 65$	+ 37	4.068	-564	- 054	24:25	$6 \cdot 94: 6.85$	1763																																												
359	$3 \cdot 2$	Pietoris α	$47 \quad 9 \cdot 787$	+.082	0.6176	- -0050	-. 0114	-6I $49 \begin{array}{llll} & 59 & 84\end{array}$	- I•86	$3 \cdot 837$	-085	+ $\cdot 260$	21:22	$7 \cdot 23: 7 \cdot 15$	1769																																												
360	$2 \cdot 7$	Argûs......... τ	$47 \quad 27 \cdot 278$	-021	1.4886	- 0006	+.0026	$-502943 \cdot 58$	+ 68	$4 \cdot 207$	21	-086	22: 23	$7 \times 95: 7 \cdot 88$	1772																																												
361	4*3	14 Canis Majoris....... θ	64932.557	+ 068	+ 2.7876	+ 0003	- 0093	-11 54 48.12	+ ${ }^{\text {II }}$	-4.315	- 394	-.015	44:49	7*28:7*19	1783																																												
362	$6 \cdot 2$	Lacaille 25	$5117 \cdot 762$	- $\cdot 008$	$+1.8903$	+ 0010	+.0012	-42 11419.58	-12	4.433	- $\cdot 267$	+.017	29	7-06	1790																																												
363	$4 \cdot 4$	20 Canis Majoris	$5140 \cdot 602$	+ 001	+2.6759	+ 0007	-0001	-16 $55 \begin{array}{lll} & 28 \cdot 78\end{array}$	- 09	$4^{*} 471$	- 378	+.011	22: 23	7 794: 7*92	1793																																												
364	$5 \cdot 6$	Volantis.............	$5235 \cdot 655$	+ 012	- 0.6747	- . 0272	- 0017	$\begin{array}{lllllllllll}-70 & 50 & 19\end{array}$	- 20	$4 \cdot 532$	+-098	+.028	29:30	7'18: 7-12	1793																																												
365	5.8	Piazzi VI. 303	54 29.989	+ 009	$+2.4577$	+ 0012	-.0013	-25 $1642^{\circ} \mathrm{O} 7$	-10	$4 \cdot 708$	- 346	+.014	$36: 37$	$7 \cdot 05: 7 \cdot 08$	1802																																												
366	I.5	21 Canis Majoris.......t	$65441 \cdot 720$	- 01	$+2.3575$	+ ${ }^{\circ 0 \mathrm{O}} 3$	+.0001	-28 $50 \quad 9 \cdot 22$	+ 01	-4.740	- 332	-001	29	$6 \cdot 88$	1804																																												
367	6. 1	Piazzi VI. 305	$57 \quad 9.210$	- .095	3.8173	- $\cdot 0091$	+.0121	+2930 11.36	+6.49	$5^{\circ} 771$	539	-.823	22	$7 \cdot 88$	1809																																												
368	$3 \cdot 8$	22 Canis Majoris........	57 44.088	+ 006	$2 \cdot 3894$	+ .0012	-0008	-27 $47 \begin{aligned} & \text { 29.74 }\end{aligned}$. 01	4.996	335	+ 001	25	7×97	1810																																												
369	var.	43 Geminorum ς	$5810 \cdot 681$	+ .002	3.5613	- -0053	- 0000	+20 431 1.57	+ 05	5.042	-500	- 008	$31: 33$	$6 \cdot 53: 6 \cdot 44$	1815																																												
370	3.0	24 Canis Majoris...... ${ }^{2}$	58 50.909	+.004	$2 \cdot 5048$	+ .0010	- $\cdot 0005$	-23 $4^{1} 13.65$	+ 05	$5 \cdot 097$	-351	-006	18	8.12	1817																																												
371	4^{11}	23 Canis Majoris γ	65914.041	+ .001	$+2.7143$	f 0004	1	-15 29 7.51	- 10	$-5^{\circ} 13^{8}$	- 380	-. 014	34:36	7'59: 7'45	1819																																												
372	$5 \cdot 4$	Lacaille 2642...........	$7 \quad 2 \quad 26.456$	+ ori	$\text { I• } 1189$	$\cdot 0040$	-0015	-56 35 51.99	- - Or	$5 \cdot 392$	$\cdot 155$	+ 002	$32: 35$	$701: 6090$	1833																																												
373^{\dagger}	$5 \cdot 7$	45 Gerninorum,pr.	$237 \cdot 948$	+.005	3.4428	- 0047	-.0007	+16 $524 \cdot 72$	+ .86	$5 \cdot 522$	-481	- 111	18	7×74	1835																																												
374	7.1	Lacaille 2631..........	$247 \cdot 204$	+.023	+ 1.9036	$+\quad 0007$	-0032	-42 $1025 \cdot 62$	- .06	$5 * 415$	- $\cdot 264$	+ $\cdot 009$	$22: 23$	7.27:7.21	1836																																												
375	$5 \cdot 6$	Mensæ θ	253.902	$+\cdot 048$	- 3.7266	- 1452	- $\cdot 0058$	-79 16 35:96	+ .02	$5 \cdot 436$	+ 525	-.003	44	8-23	1837																																												
376	1.8	25 Canis Majoris...... δ	$7 \quad 419.505$	+.003	+ 2.4391	+ 00011	-.0004	$\begin{array}{llll}-26 & 14 & 3 \cdot 85\end{array}$	- 01	-5.551	- 339	+ -002	27:28	$7^{\prime} 13: 7^{\prime} 17$	1839																																												
377	$6 \cdot 1$	Lacaille 2651.	449.459	$+.024$	$1 \cdot 4375$	014	-.0033	-51 $4^{88} 40 \cdot 17$	- 38	$5 \cdot 542$	- 198	+.053	32: 33	$7 \cdot 23: 7 \cdot 17$	1842																																												
378	4°	22 Monocerotis.	645.454	-022	3.0652	-0016	+.0002	- $01937 \cdot 67$	- $\cdot 09$	$5 \cdot 746$	-426	+ 011	26:27	7•98	1853																																												
379	$5 \cdot 3$	51 Geminorum............	737×746	- 007	$+3.4478$	- 005I	+.0008	+16 1943.04	+ 44	$5 \cdot 880$	- $\cdot 478$	- .050	24:26	$8 \cdot 63: 8.79$	1856																																												
380	$3 \cdot 8$	Volantis γ^{2}	$935 \cdot 790$	- 040°	-0.4916	- 0323	+.0030	-70 20 10.36	- 74	5•901	+.070	+ .094	21: 22	7.90:7.85	1867																																												
3^{81}	$4 \cdot 5$	Puppis I	$7 \quad 942.434$	+ 0.09	+ 1.7100	000	-.0143	-46 $3530 \cdot 97$	-61	- 5.915	-. 233	+ -089	34:36	6.88: 6.80	1869																																												
$3{ }^{3} 2$	$3 \cdot 5$	54 Geminortha λ	1220.759	+.023	$3 \cdot 4507$	- .0057	-.oo33	+16 4314.98	+ 33	6. 272	-475	-. 048	$36: 35$	7.03:6.95	$188{ }^{\circ}$																																												
383	$2 \cdot 5$	Argîs ${ }^{\text {a }}$	$1.336 \cdot 649$	+ 005	2.1189	+ .0011	--0007	$\begin{array}{llll}-36 & 55 & 3 \cdot 87\end{array}$	+ OI	$6 \cdot 331$	- 290	-002	30: 3 i	7-14:7107	1896																																												
$384{ }^{+}$	3.4	55 Geminormn.... seq. δ	14 9.042	+ 001	3.5573	- •0074	-.0013	+22 9 59.51	+ 12	$6 \cdot 390$	493	- 017	24:25	7-27:7:22	1598																																												
385	5°	29 Canis Majori	1430.513	+ 007	$+2.4975$	+ .0008	- $\cdot 0010$	-24 $22 \begin{array}{ll}34 & 37\end{array}$	+ .06	$6 \cdot 411$	- 342	- 008	21:22	7-08:787	1899																																												
386	3*9		$71652 \cdot 812$	+.025	-0.0195	- 0253	--0035	-67 $46 \quad 26 \cdot 70$		-6.605	+.006	-.006	30	$7{ }^{\circ} \mathrm{Og}$	1917																																												
387	3.9	60 Geminorum...........	1930.915	+.061	+3.7319	- 0104	-.0086	+27 5948.41	+ 6.63	$6 \cdot 907$	- 508	-.090	25:26	$7 \cdot 06: 6 \cdot 96$	1931																																												
388	$2 \cdot 3$	3I Canis Majoris...... η	208.33^{8}	+.005	+2.3726	$+\cdot 0011$	$-\cdot 0007$	$-29 \quad 6 \quad 29^{\circ} 03$	-..03	$6 \cdot 864$	- 322	+.004	22	7•61	1934																																												
389	2.9	3 Canis Minoris...... β	$2143 \cdot 647$	+.026	$+3.2559$	$\text { - } \cdot 0043$	-.0034	+ 82926.96	+ 33	7.041	$-\cdot 441$	-.043	26:30	$779: 773$	1944																																												
390	$6 \cdot 7$	Lacaille 3274.........	22 I.70	-. 03	-19.815	-2.648	+.003	-86 5 52 II:36	- 06	7-015	$+2 \cdot 709$	+.007	47:150	11.31:8.70	$19+7$																																												
391	4.3	62 Geminorum .	72240.866	- 093	$+3.8649$	- 0124	+.0117	+3159 1.36	- I. 46	-6.893	-. 526	$+\cdot 183$	20	$7 \cdot 97$	1952																																												
392	$5 \cdot 2$	Lacaille 2829.........	23 47.909	+.004	$1 \cdot 5405$	- 018	$-\cdot 0006$	-50 $\mathbf{4}^{8} \quad 59 \cdot 86$	+ .02	7•171	-207	-.003	32:35	7-18:710	1960																																												
393	$4 \cdot 9$	6 Canis Minoris.........	2413.819	- $\cdot 002$	$3 \cdot 3425$	- 0054	$+\cdot 0002$	+121248.20	+ 15	$7 \cdot 222$	452	-.019	19: 21	$7 \cdot 85: 7.84$	1962																																												
394	$2 \cdot 9$	Argâs................. σ	$\begin{array}{ll}26 & 3.442\end{array}$	+.046	$\text { I. } 903 \mathrm{I}$	+ .0008	$-.0058$	$\begin{array}{lll}-43 & 5 & 54.50\end{array}$	- I. 43	$7^{\circ 172}$	-254	+.180	27	$7 \cdot 97$	1972																																												
395	$4{ }^{2}$	69 Geminorum..... ...v	$2945 \cdot 611$	+.015	3'7029	- 0114	- 0020	+27 74.63	+ 89	7•768	- 495	-.116	21	$7 \cdot 71$	1987																																												
396	$4 \cdot 6$	Lalande 148 ro.......	$72946 \cdot 281$	+.034	$+2 \cdot 5665$	$+.0006$	- $\cdot 0048$	$\begin{array}{ll} -22 & 4 \\ \hline \end{array}$				$+.045$		7`07: 7^04 & 1988 \\ \hline \[397 \] & \(5 \cdot 2\) & 25 Monocerotis........... & \[3218 \cdot 330 \] & +.037 & \[2 \cdot 9841 \] & \[\text { - } \cdot 0020 \] & \[-.0047 \] & \[-353 \quad 15 \cdot 67 \] & \[-14 \] & \[7 \cdot 840 \] & \[\cdot 396 \] & \[+018 \] & \[55: 67 \] & \[7 \cdot 78 \] & 1999 \\ \hline \[39^{8} \] & \[5 \cdot 1 \] & 71 Geminorum 0 & \[32 \quad 38 \cdot 266 \] & \[+.017 \] & \[3.9246 \] & - .0161 & \[-\cdot 0022 \] & \[+344849^{\circ} 11 \] & \[+96 \] & \[8 \cdot 006 \] & \[\cdot 522 \] & \[-122 \] & \[17 \] & \[7 \cdot 90 \] & 2001 \\ \hline \[399 \] & \[4.9 \] & Carinæ............... \(Q\) & \[33 I I \cdot 309 \] & \[\text { - } 010 \] & \[1.4850 \] & \[\text { - } \quad 0028 \] & \[+\cdot 0014 \] & \[-521837 \cdot 99 \] & \[+14 \] & \[7 \cdot 949 \] & \[\cdot 196 \] & \[-.02 \mathrm{I} \] & \[23: 24 \] & \[6 \cdot 95: 6 \cdot 87 \] & 2003 \\ \hline 400 & \(4 \cdot 7\) & Puppis.............. \(f\) & 33 40.023 & \[+.022 \] & \[2 \cdot 2189 \] & \(+\cdot 0012\) & --0029 & \|-34 \(4436 \cdot 67\) & \[-10 \] & \[7.953 \] & \[\cdot 293 \] & \[+.014 \] & 20: 21 & \(7 \cdot 46: 7 \cdot 36\) & 2004 \\ \hline \end{tabular} \begin{tabular}{	c	c	c	c	c	c	c	c	c	c	c	c	c	c	c	c	} \hline No. & Mag. & Name. & Mean R.A. \(1900^{\circ} 0\). & \(\mu_{a} \Delta \mathrm{E}\). & Annual Variation 1900º. & Sec. Var. 1900 o. & \[\begin{gathered} \text { Proper } \\ \text { Motion. } \end{gathered} \] & Mean Dec. \(1900 \%\). & \(\mu_{\delta} \Delta \mathrm{E}\). & Arnual Variation \(1900{ }^{\circ}\). & Sec. Var. \(1900^{\circ}\). & Proper Motion. & No. of Obs. & Epoch 1900+. & \[\begin{aligned} & \text { Boss } \\ & \text { No. } \end{aligned} \] \\ \hline 401* & 0.2 & Io Camis Minoris... & \[\begin{array}{lll} \text { h m } & \mathrm{s} \\ 7 & 34 & 3 \cdot 724 \end{array} \] & & \[\begin{array}{r} 8.1433 \\ +3^{\circ} 1433 \end{array} \] & \(\cdot 0055\) & \[-{ }^{\text {8}} \cdot 0466 \] & + \(5288^{\prime \prime} 44^{\prime \prime} 79\) & +7゙20 & - 9.029 & . 409 & & & & \\ \hline 402 & \(4^{1.1}\) & 26 Monocerotis... & \begin{tabular}{l} \(3628 \cdot 129\) \\ \hline \end{tabular} & +.043 & +2.8671 & . 013 & -0051 & \(\begin{array}{r}\text { r } \\ \hline\end{array}\) & + & \(\begin{array}{r}\text { - } \\ -8.215 \\ \hline\end{array}\) & - 377 & & & \(6.98: 6.99\) \(8.46: 8.53\) & \[\begin{aligned} & 2008 \\ & 2021 \end{aligned} \] \\ \hline \(403+\) & 3.5 & 77 Geminorum....seq. к & \(3824 \cdot 656\) & + \({ }^{-12}\) & 3.6280 & 11 & -0016 & +24 \(3^{8816.14}\) & + 46 & \(8 \cdot 408\) & 477 & - . 062 & 18:20 & 7*61:741 & 2029 \\ \hline 404 & \(1 \cdot 1\) & 78 Geminorum... 8 & \(3911 \cdot 442\) & + 38 r & 3.6776 & -0128 & -0471 & +28 163.89 & + 47 & \(8 \cdot 466\) & 477 & --058 & 17 & \(8 \cdot 09\) & 2031 \\ \hline 405 & \(4^{1.1}\) & 3 Puppis...............l & \(3947 \cdot 560\) & + 002 & \(2 \cdot 4083\) & + .0011 & -0002 & -28 4256.48 & - 08 & \(8 \cdot 466\) & 314 & - -10 & 16:17 & \(8 \cdot 62: 8.48\) & 2035 \\ \hline 406 & 5.1 & Lacaille 2945 & \(74017 \cdot 706\) & - -085 & + 2.0427 & + -0005 & +-O112 & -40 \(4122 \cdot 81\) & + 1•43 & \(-8.685\) & -268 & - 189 & 19 & 7•58 & 2039 \\ \hline 407 & 5.4 & 80 Geininorum......... \(\pi\) & 413.543 & -002 & 3.8775 & - .0165 & +-0003 & +33 \(3940 \cdot 35\) & + 28 & 8.596 & -507 & -- 040 & 22:23 & 7-21:712 & 2049 \\ \hline 408 & \(5 \cdot 2\) & 4 Puppis... & \(4120 \cdot 562\) & + 009 & + \(2 \cdot 7628\) & -0004 & -0012 & -141914.57 & - 02 & \(8 \cdot 576\) & - - 360 & + \(\cdot 003\) & 22 & \(7 \cdot 87\) & 2051 \\ \hline 409 & \(8 \cdot{ }^{*}\) & Gilliss P.Z. \(575{ }^{2}\) & 4131.05 & & -86.829 & \(-54.772\) & & \(\begin{array}{lllllllll}-89 & 13 & 49 & 78\end{array}\) & & 8.592 & +11*443 & & 13:16 & 1139 : 1141 & ... \\ \hline 410 & 3.2 & Puppis..............c & 4141499 & + 015 & \(+2.1365\) & + OOHI & -0021 & -37 \(4332 \cdot 86\) & + .06 & 8.614 & -277 & -008 & 18:20 & 702: 6 90 & 2052 \\ \hline 411 & \(3 \cdot 8\) & Volautis............. 5 & 743 3.171 & 014 & -0.7121 & . 0614 & +.0020 & -72 2156.86 & -01 & \(-8.711\) & +-097 & + \({ }^{\circ} \mathrm{OO}\) & 26:29 & 7004:7.02 & 2056 \\ \hline \(412+\) & 3.4 & 7 Argûsseq. \(\xi\) & \(45 \quad 5 \cdot 299\) & + \(\cdot 004\) & + \(2 \cdot 5229\) & + -0008 & - 0005 & -24 \(\mathbf{3}^{6} 31 \times 5\) & -or & 8.872 & - 326 & + \({ }^{-001}\) & 38:43 & 7.02:6.96 & 2065 \\ \hline 413 & \(4 \cdot 2\) & Puppis.............P & 4611.463 & + \(\cdot 008\) & 1.8280 & -0001 & 1 & -46 \(\quad 7 \quad 16.59\) & + -06 & 8.969 & -234 & --009 & 27: 28 & 7.08:700 & 2070 \\ \hline \(414+\) & \(5 \cdot 5\) & 9 Puppism... & 478.417 & +-034 & \(2 \cdot 778{ }^{\circ}\) & 10 & O41 & \(-133^{88} \quad 0.70\) & + \(2 \cdot 88\) & \(9 \cdot 373\) & 357 & - 339 & 20:23 & 8.31: 8.50 & 2075 \\ \hline 415 & \(5^{\cdot 1}\) & 83 Geninorum......... \(\phi\) & \(4722 \cdot 635\) & +-018 & 3.6784 & - 0133 & 22 & +27 128.36 & + 30 & \(9 \cdot 090\) & 474 & - 037 & 17 & 8.16 & 2078 \\ \hline 41 & 3.6 & Purpisa & \(74846 \cdot 750\) & + -011 & +2.0620 & + -0009 & 16 & -4019 \(4 \cdot 19\) & + -05 & -9.170 & \(\cdot 263\) & - -008 & 22: 23 & \(6 \cdot 70: 6.64\) & 2087 \\ \hline 417 & \(5 \cdot 9\) & Lacaille 3083 & 49 1-184 & ... & 0.4113 & . 0247 & & -65 \(56 \quad 24 \cdot 64\) & & \(9 \cdot 180\) & 049 & & 21 & \(7 \cdot 24\) & \\ \hline 418* & 4.3 & Lacaille 3068.......... & \(5021 \cdot 861\) & + - 001 & 1.7639 & -0007 & 002 & -47 \(5031 \cdot 27\) & + 13 & \(9 \cdot 303\) & 24 & --018 & 31:33 & \(7 \cdot 42: 731\) & 2095 \\ \hline 419 & \(6 \cdot 1\) & I Cancri.... & \(5118 \cdot 792\) & + 015 & \(+3.4106\) & 0086 & 0019 & +16 \(\quad 326.47\) & + 39 & \(9 \cdot 407\) & - \(\cdot 436\) & --049 & 27: 29 & \(8 \cdot 00\) & 2098 \\ \hline 420 & \(8 \cdot 1\) & Octautis............A & \(53 \quad 2 \cdot 01\) & + 49 & \(-44 \cdot 246\) & 16.886 & -043 & -88 \(3424 \cdot 36\) & - 09 & \(9 \cdot 481\) & \(+5^{6} 690\) & + \({ }^{\circ} 009\) & 46:98 & 11-40:949 & 2102 \\ \hline 421 & 3.5 & Argus............... \(\chi\) & \(75414 \cdot 108\) & + \({ }^{\text {- }}\)-27 & +1.5270 & .0030 & --0037 & -52 \(4250 \cdot 24\) & - 12 & -9.567 & -191 & + -017 & 39:43 & 731:724 & 2111 \\ \hline 422 & \(6 \cdot 2\) & 2 Cancri................ & \(5452 \cdot 855\) & - 008 & 3.6366 & -0133 & +-0010 & +25 3959.83 & + \({ }^{\text {a }}\) & \(9 \cdot 634\) & 461 & -001 & 19:20 & \(7 \cdot 87: 7 \cdot 85\) & 2117 \\ \hline 423 & \(5 \cdot 9\) & 3 Cancri. & \(55 \quad 3.474\) & + 001 & 3.4435 & -0094 & -0001 & +173458.00 & + 12 & \(9 \cdot 662\) & -436 & - -015 & 19 & \(7 \cdot 95\) & 2118 \\ \hline 424 & \(5 \cdot 2\) & Geminorumx & \(75722 \cdot 609\) & + 011 & 3.6922 & - .or 50 & -.0015 & +28 429.21 & + 37 & 9.876 & -465 & - .052 & 45:49 & \(7 \cdot 25: 7 \cdot 18\) & 2131 \\ \hline 425 & \(2 \cdot 0\) & Argûs................ 5 & 8 8 0-4.164 & +.022 & 2.1079 & + \({ }^{0013}\) & -0030 & -39 \(4316 \cdot 61\) & . 05 & \(10 \cdot 022\) & \(\cdot 261\) & + 007 & 47: 51 & 733:721 & 2141 \\ \hline 426 & 5.5 & Io Cancri............... \(\mu\) & 8 1 152.814 & \(\cdot 014\) & \(+3.5365\) & -0120 & +.0018 & +21 \(5^{2} 19.25\) & + 64 & -10.247 & - 440 & - .08ı & 24 & 7.85:7.86 & 2146 \\ \hline 427 & \(8 \cdot 5\) & Brisbane 200 & 33.02 & & -12.040 & - 1•773 & & -85 \(3916 \cdot 05\) & & 10.254 & +1.513 & & 41:48 & 11-37:10\%87 & \\ \hline 428* & 2.8 & 15 Argûs...............p & 317.060 & + 050 & +2.5545 & + 0010 & -0065 & -24 \(057 \cdot 05\) & - 34 & 10.226 & - 314 & + 045 & 43:53 & 7*63:7*59 & 2153 \\ \hline 429 & 6. & 14 Caneri............... 4 & \(425 \cdot 782\) & + 041 & \(3 \cdot 6207\) & - 014 & - 051 & +25 4836.62 & + \(2 \cdot 84\) & 10.711 & 447 & - 354 & 26 & \(8 \cdot 03\) & 2157 \\ \hline 430 & \(1 \cdot 6\) & Argûs \(\gamma\) & 627.024 & + 003 & r.8496 & 0000 & - 0004 & \(\begin{array}{llll}-47 & 2 & 30 \cdot & 34\end{array}\) & + 02 & . 511 & -225 & \(\cdot 003\) & \(36: 39\) & 7-14:707 & 2167 \\ \hline \(43{ }^{1}\) & \(5 \cdot\) & 20 Puppis................. & \(88844^{\prime 170}\) & + \(\cdot 007\) & +2.7580 & -0004 & - 0009 & -15 29.12 .63 & + 05 & -10.685 & - 336 & - \(\cdot 007\) & 62:68 & 7•84:7'73 & 2183 \\ \hline 432 & 3.7 & \({ }_{17}\) Cancri.............. \(\beta\) & 1150 & +.026 & 3.2568 & -0072 & -0035 & + 92937.41 & + 41 & \(10 \cdot 906\) & - 394 & --054 & 54:60 & \(749: 7 \times 53\) & 2195 \\ \hline 433 & \(5 \cdot 3\) & 18 Cancri............... \(\chi\) & 1359.424 & +-007 & 3.6525 & - 0167 & - 0009 & +27 3226.74 & + 3.06 & 11.452 & 439 & - \(\cdot 388\) & 28 & 789 & 220 \\ \hline 434 & \(4 \cdot 5\) & Puppis..............q & 1448.682 & +-066 & 2445 & + .0020 & - 0096 & \(-36 \quad 2056 \cdot 85\) & - 59 & 11.039 & 266 & + -085 & \(33: 35\) & 6.88:6.99 & 2207 \\ \hline 435 & \(6 \cdot 1\) & 20 Cancri.............. \({ }^{1}\) & 17 38.294 & + \({ }^{\circ} 030\) & 3.4406 & -014 & - 0039 & +18 \(3911 \cdot 82\) & + 25 & 11•361 & 408 & -032 & \(24: 25\) & \(7 \cdot 76\) & 2218 \\ \hline 436 & \(1 \cdot 4\) & Argûst & \(82027 \cdot 651\) & + -030 & + 1.2356 & -0091 & -0038 & -59 II 15. 39 & -11 & -11.518 & -142 & +.014 & 23: 24 & 7'92:797 & 2233 \\ \hline 437 & \(3 \cdot 9\) & Bradley 1197. & \(2039 \cdot 812\) & + \(\cdot 034\) & \(2 \cdot 9996\) & 0033 & -0044 & - 3 34 48.92 & + 19 & \(11 \times 571\) & \(35^{2}\) & -. 025 & 16:20 & \(7 \cdot 65: 743\) & 2237 \\ \hline \(43^{8}\) & \(6 \cdot 2\) & 29 Caneri & 232.558 & + 007 & \(+3.3527\) & -0098 & - 0009 & +14 \(3231 \cdot 07\) & + 14 & \({ }_{11} 1733\) & - 392 & --018 & 25:26 & 787 : 7'90 & 2253 \\ \hline 439 & 4.2 & Chamaleontis \(\theta\) & 2338.45 & + 51 & - 1.7221 & \(\cdot 1648\) & --0447 & -77 \(\quad 943.74\) & - 20 & \({ }_{11} 7736\) & + 214 & + 022 & \(32: 78\) & 11'33: \(9^{\circ} 03\) & 2255 \\ \hline 440 & 3.5 & Volantis............ \(\boldsymbol{\beta}\) & 24 38.953 & +-048 & + 0.6644 & -0266 & --0067 & -65 \(\mathbf{4}_{811} 185\) & + 1.18 & 11.995 & . 072 & -166 & \(24: 26\) & \(7 \cdot 20: 7 \cdot 08\) & 2258 \\ \hline 44 I & & Lacaille 3353... & 82522.620 & + \({ }^{-17}\) & \(+2.0921\) & +.0019 & --0023 & -42 1515.43 & & & '241 & + -006 & \(24: 25\) & \(7 \cdot 26: 735\) & 2262 \\ \hline \[442 \] & \(5 \cdot 8\) & \(3_{1}\) Cancri............. \(\theta\) & 25 53.641 & + 029 & 3.4268 & - 0119 & -.0037 & +1825 \(56 \cdot 57\) & + \(\cdot 54\) & 11.986 & - 396 & - 069 & 18 & \(7 \cdot 89\) & 2265 \\ \hline 443 & \(6 \cdot 3\) & Lacaille 3368......... & \(2629 \cdot 655\) & +-029 & \(1 \cdot 9577\) & + 0011 & --0041 & -45 59 48.25 & + 11 & 11.974 & -223 & - -015 & 23: 26 & 706: \(7^{\circ 01}\) & 2270 \\ \hline 444 & \(5 \cdot 7\) & 33 Cancri.............. \(\eta\) & 2655.576 & + 020 & \(3 \cdot 4762\) & -.0132 & 026 & +20 4651.23 & + 40 & 12.044 & -401 & - 054 & 32:30 & \(7 \times 52: 7 \cdot 42\) & 2271 \\ \hline 445 & 4.2 & 4 Hydre \(\delta\) & 3221.730 & + 045 & \(3 \cdot 1790\) & -0066 & 0049 & + \(638 \cdot 64\) & -10 & \(12 \cdot 378\) & -359 & OII & 33:39 & \(8.45: 8.73\) & 2295 \\ \hline 446 & \(6 \cdot 1\) & Lacaille 3443 & \(83252 \cdot 883\) & + 006 & + 1•7923 & -0002 & -.0008 & & & & - 200 & & & 6.93:7.04 & 2297 \\ \hline 447 & \(4 \cdot 6\) & 5 Hydræ............. \(\sigma\) & \(33311 \cdot 857\) & + -10 & 3.1388 & - 005 & --0012 & + 34132.89 & + 16 & 12.467 & - 353 & - . 020 & 16 & 7.94 & 2302 \\ \hline 448 & \(4 \cdot 1\) & Velorum & \(34 \quad 7 \cdot 659\) & +-010 & \({ }^{2} \cdot 1084\) & + \({ }^{0023}\) & - 0013 & & + 04 & 12.494 & \({ }^{235}\) & - 006 & 22 & \(7 \cdot 41\) & 2307 \\ \hline 449 & \(5 \cdot 3\) & 6 Hydre................ & 3517.150 & +-047 & 2.8428 & - -010 & -.0059 & -12 7118.61 & + -03 & 12.571 & 317 & . 004 & 28:29 & 8.05: \(8 \cdot 06\) & 2315 \\ \hline 450 & 3.9 & Pyxidis \(\beta\) & \(3611 \cdot 285\) & --003 & \(2 \cdot 3472\) & + 0027 & -0004 & -34 57 12.06 & \(+{ }^{+} 3\) & 12.648 & 260 & & 29:28 & \(6.95: 6.94\) & 2318 \\ \hline \multicolumn{16}{	c	}{\begin{tabular}{l} 401. Reduction to C.G., \(+\mathrm{o}^{\mathrm{s}} \cdot 017,+\mathrm{t}^{\prime \prime} \cdot 22\). \\ 403. \(3^{\circ} 5,8.0 \quad 6^{\prime \prime \prime} 6 \quad 236^{\circ} \quad 1903^{\circ} 3\). \\ 412. \(3.4,13.7 \quad 5^{\prime \prime} \cdot 4 \quad 224^{\circ} \quad 1898.3\). \\ 414. \(6.0,6.6\); very close binary. \\ 418. J Puppis in Uranometria Argentina. \\ 428. 15 Navis t in Auwers' Bradley. \end{tabular}} \\ \hline \end{tabular} \begin{tabular}{	c	c	c	c	c	c	c	c	c	c	c	c	c	c	c	c	} \hline No. & Mag. & Name. & Mean R.A. \(1900^{\circ} 0\). & \(\mu_{\alpha} \Delta \mathrm{E}\). & Annual Variation \(1900^{\circ} 0\). & Sec. Var. \(1900^{\circ}\). & Proper Motion. & Mean Dec. \(1900^{\circ}\). & \(\mu_{\delta} \Delta \mathrm{E}\). & Annual Variation 1900 0. & Sec. Var. 1900\%. & Proper Motion. & No. of Obs. & Epoch & \[\begin{aligned} & \text { Boss } \\ & \text { No. } \end{aligned} \] \\ \hline & & & \begin{tabular}{llll} h & 11 \\ 8 & \\ 8 & \\ \hline \end{tabular} & s \(+\quad .006\) & & & & & & & & & & & \\ \hline 451 & & & & +.006 & + 1.9901 & & & & & \(-12 \cdot 718\) & 219 & \(\cdot .013\) & 20 & \(8 \cdot 09\) & 324 \\ \hline 452 & \(4^{\prime 7}\) & 43 Cancri............... \(\gamma\) & 3729.928 & +.057 & \(3 \cdot 4788\) & -0143 & - \(\cdot 0073\) & +21 49 41.26 & + 39 & 12.768 & 386 & - 050 & 17 & \(7 \cdot 81\) & 2327 \\ \hline 453 & 4.4 & Carine............. \(d\) & 3824.438 & +.022 & I 3277 & -082 & -.0032 & -59 2414.61 & + 04 & \(12 \cdot 785\) & 143 & 006 & 27 & \(7 \cdot 02\) & 2331 \\ \hline 454 & \(4^{1} 1\) & 47 Cancri 5 & \(39 \quad 0.184\) & + 008 & + 3.4154 & - 0128 & -0012 & +1831 1791 & +1.63 & 13.058 & - 377 & -. 239 & 23: 24 & \(6.99: 6.83\) & 2336 \\ \hline 455 & \(7{ }^{\circ}\) & Lacaille & 39 26.91 & & \(2 \cdot 466\) & - 2.640 & & & & 12.849 & +1.401 & & 52:63 & 11'37: \(10 \cdot 67\) & \\ \hline 456 & \(3 \cdot 6\) & Py & \(83934 * 409\) & + 007 & +2.4100 & + .0028 & -.0009 & -32 \(4933 \cdot 07\) & -05 & -12.851 & - 264 & +.006 & 23 & 775 & 2342 \\ \hline 457 & \(5^{\cdot 2}\) & Velorum D & \(4032 \cdot 495\) & -.012 & 1.8793 & + .0010 & +.0016 & \(492739^{\circ} 70\) & - 04 & 12.917 & 04 & +.005 & 26: 27 & 7 \(33: 7 \times 27\) & 2347 \\ \hline \(45^{8}\) & \(4^{.2}\) & 48 Cane & \(4038 \cdot 814\) & + 011 & 3.6399 & 195 & -.0015 & +29 \(732 \cdot 67\) & \(\cdot 3^{6}\) & 12.979 & 400 & -.050 & 16 & 7-26 & 2348 \\ \hline 459 \({ }^{\text {¢ }}\) & \(3 \cdot 4\) & 11 Hydres. & \(4128 \cdot 759\) & +.094 & -1808 & -0071 & -.0127 & + 6478.21 & 40 & 13.038 & 346 & 054 & 22: 24 & 7'39:7'44 & 2354 \\ \hline 460 & \(3 \cdot 9\) & Velorum & 4238.217 & + -01I & \(2 \cdot 0328\) & + 0023 & -.0015 & -45 \(4032^{\circ} 44\) & -09 & 13.075 & 219 & - . 013 & 34:35 & 7'26:7'25 & 2358 \\ \hline 461 & \(5 \cdot 3\) & 14 Hydre & \(84420 \cdot 212\) & + 012 & \(+3.0169\) & -0036 & 14 & - 3 4 19.23 & + 22 & -13.198 & 326 & - -024 & \(33: 42\) & 8.53:9.05 & 2365 \\ \hline 462 & \(5 \cdot 7\) & Chauceleontis...... \(\eta\) & \(4443^{\cdot 606}\) & +.120 & - 1.9313 & - 22217 & -.0151 & \(\begin{array}{llllllllllllllll}-78 & 36 & 1 \cdot 30\end{array}\) & - \(\cdot 26\) & \(13 \cdot 167\) & + 219 & +.033 & 46 & \(7 \cdot 92\) & 2366 \\ \hline 463 & 8.8* & Gilliss P.Z. 6020.... & 45 26.22 & & -27.819 & -11.600 & & \(\begin{array}{llll}-88 & 8 & 24.43\end{array}\) & ... & 13.246 & +3.050 & & 1 I & \(11 \cdot 38\) & \\ \hline 464 & \(4 \cdot 2\) & Pyxidis............ \(\gamma\) & \(4617 \cdot 188\) & + 073 & +2.5451 & + .0025 & -.0103 & -27 2019.70 & - 57 & 13.221 & - . 271 & +.08I & 31 & \(7 \cdot 07\) & 2375 \\ \hline 465 & \(6 \cdot 2\) & 55 Cancri \(\rho^{1}\) & \(4638 \cdot 224\) & + 290 & 28 & - 0196 & -.0365 & +28 \(4244{ }^{\prime} 45\) & + 1.95 & 13.571 & -381 & - \({ }^{\text {2 } 245}\) & 2 I & \(7 \cdot 95\) & 2380 \\ \hline 466 & \(6 \cdot 8\) & Lacai & 84813.378 & +.008 & + 2.2203 & + -0034 & -0012 & -40 \(36 \begin{array}{ll} & 37\end{array}\) & .05 & -13.435 & - \(\cdot 234\) & - -007 & 30:31 & 6•96: \(6 \cdot 94\) & 2386 \\ \hline 467 & \(3 \cdot 2\) & 16 Hydra & 50.6 .440 & + .050 & 3.1746 & -0070 & - 0069 & + 61934.13 & --07 & 13.541 & 335 & +.009 & 28:33 & 7•18:7.66 & 2393 \\ \hline 468 & \(5 \cdot 8\) & 60 Caneri & 5027.977 & +.002 & 13 & 096 & -0002 & +12 029.33 & + 17 & 13.595 & 346 & -.021 & 18 & 8-11 & 2394 \\ \hline 469 & \(5 \cdot 4\) & Lacai & 5029.273 & +-012 & 10 & + 0025 & .0016 & -47 \(8124^{\prime} 76\) & + 30 & 13.617 & 210 & -.042 & \(30: 31\) & \(7 \cdot 24: 7 \cdot 19\) & 2395 \\ \hline 470 & 3.9 & Carinæ. & \(5246 \cdot 845\) & +.023 & I.3634 & -0077 & -.0034 & -60 15 44.88 & - 39 & 13.665 & -139 & +.057 & 24:26 & \(6.83: 6.81\) & 2406 \\ \hline 471 & 4.4 & 65 Cancr & 853 1-120 & - 017 & \(+3 \cdot 286{ }^{-}\) & - \(\cdot 0098\) & +.0025 & +12 14 41.44 & + \(\cdot 27\) & \(-13.776\) & - 343 & - 039 & 27:28 & \(6.93: 6 \cdot 81\) & 2407 \\ \hline 472 & \(5 \cdot 3\) & Carinæ \({ }^{1}\) & 54-31.577 & + -013 & 4708 & -0054 & 16 & -58 \(5^{80} 35^{\circ} 41\) & \(\cdot 02\) & 13.831 & -149 & +.002 & 18 & 8.35 & 2414 \\ \hline 473 & \(5 \cdot 6\) & 69 Canc & \(85653 \cdot 557\) & -000 & 3.5158 & -0172 & 000 & +24 50 47.39 & + 04 & 13.987 & 361 & - -005 & 31:33 & \(797: 7 \times 96\) & 2426 \\ \hline 474 & \(3 \cdot 5\) & Velorum.............c & \(9 \quad 042 \cdot 268\) & +.047 & \(2 \cdot 0658\) & + .0035 & - \(\cdot 0068\) & -46 \(41158 \cdot 34\) & + •16 & \(14 \cdot 243\) & - 206 & . 024 & 30 & \(6 \cdot 87\) & 2438 \\ \hline 475 & \(5 \cdot 5\) & 18 H & - \(42 \cdot 530\) & + .011 & 3.1615 & -0068 & -.0014 & + \(52931{ }^{\circ} \mathrm{O}\) & -02 & \(14 \cdot 222\) & 319 & - \(\cdot 003\) & 19:20 & \(779: 777\) & 2439 \\ \hline 476 & \(4^{1.1}\) & & \(9 \bigcirc 52 \cdot 147\) & +.016 & +0.9559 & -0223 & -'0023 & & 71 & -14.331 & -092 & - 102 & 25: 27 & \(6 \cdot 84\) : 7000 & 2440 \\ \hline 477 & \(5 \cdot 3\) & 76 Cancri. & 219.882 & + 011 & \(3 \cdot 2541\) & -0094 & - \({ }^{\text {OOI }} 3\) & +11 414.46 & + 10 & \(14^{\circ} 33^{\circ}\) & 326 & - •OII & 24: 25 & 8.76: 8.86 & 2445 \\ \hline 478 & \(5 \cdot 3\) & 77 Cancri \(\xi\) & \(336 \cdot 635\) & - 002 & 3.4569 & - 0159 & +.0003 & +2227 0.16 & + .06 & 14.404 & 345 & -.007 & 20 & 8.03 & 2449 \\ \hline 479 & 1.8 & Argûs................入 & 419.050 & +.017 & \(2 \cdot 2046\) & + .0045 & -0024 & -43 11 43.46 & - .04 & 14.435 & -217 & +.005 & 31:32 & 7 '00: \(7^{\circ} 06\) & 2452 \\ \hline 480 & 4.4 & CarinæG & 453.043 & \(+\cdot 038\) & - 1868 & - 0625 & - \(\cdot 0055\) & \(-721212010\) & +.05 & 14.482 & OI & -008 & 25:26 & \(6.87: 6.82\) & \(245^{8}\) \\ \hline 48I & 3.4 & & 9820.001 & + 043 & \(+\) & 30 & - \(\cdot 0052\) & \(-5833{ }^{25} 5^{\prime} 94\) & \(+.04\) & \(-14.686\) & - 150 & - .005 & 18 & \(8 \cdot 36\) & 2473 \\ \hline 482 & \(4^{\circ} \mathrm{O}\) & 22 Hydræ.............. \(\theta\) & \(9 \quad 9.808\) & -. 073 & + 3.1244 & -0060 & +.0087 & + 24478.67 & \(+2.61\) & \(15^{\circ} \mathrm{O} 42\) & - 304 & - 312 & 19: 18 & 8.41: 8.35 & 2479 \\ \hline 483 & 5.5 & Octantis............ 5 & 1113.48 & +I.15 & -7.860 & I. 629 & 1 & -85 \(15 \begin{array}{llll} & 46 \cdot 67\end{array}\) & - 30 & 14.820 & +-786 & +.033 & 66:189 & 11.39:8.82 & 2486 \\ \hline 484 & \(1 \cdot 5\) & Argûs............... \(B\) & \(12 \quad 5.974\) & + \(\cdot 257\) & \(+0.6750\) & -035 \({ }^{\text {8 }}\) & -.0313 & -69 18 1818.10 & - 80 & 14.806 & -.056 & +.098 & 21 & 8.21 & 2493 \\ \hline 485 & \(6 \cdot 9\) & 83 Cancr & 1324.019 & +.056 & 355 & - 0135 & -.008I & +18 \(784 \cdot 84\) & + 95 & 15.117 & 318 & - 138 & 24:28 & \(6 \cdot 88: 6 \cdot 87\) & 2501 \\ \hline 486 & 2.0 & Argûs................t & 91424.796 & + -024 & + I. 60 & 23 & -.0034 & \(-5^{8} 5120 \cdot 19\) & + -01 & -15.040 & - 148 & -.002 & 21:22 & 7^15:7^13 & 2503 \\ \hline 487 & \(5 \cdot 4\) & VelorumK & \(1446 \cdot 173\) & +.029 & 9934 & + .0040 & -.0038 & -50 3748.86 & -04 & \(15^{\circ} 054\) & -185 & +.005 & 21: 22 & 7•51: 7-57 & 2504 \\ \hline 488 & \(3 \cdot 3\) & 40 Lyncis & 14 57.742 & + 133 & 6676 & -.0265 & -.0176 & +34 \(4^{8} 56 \cdot 10\) & -08 & 15.060 & 344 & + -0, & 21 & \(7 \cdot 54\) & 2507 \\ \hline 489 & \(5^{\circ}\) & Pyxidis............. \(\theta\) & 17 3.930 & + 011 & \(2 \cdot 6541\) & + .0035 & - oois & -25 \(32 \begin{array}{ll}13.45\end{array}\) & + .06 & 15•199 & -246 & - 009 & 33:36 & 7'13:7.18 & 2516 \\ \hline 490 & 2.4 & Argû & \(19 \quad 0.991\) & + -016 & I \(\cdot 8558\) & + .0026 & -.0023 & -54 \(35 \quad 0.53\) & + .03 & 15.306 & -168 & -.005 & 29:30 & \(6 \cdot 93: 6.88\) & 2526 \\ \hline 491 & \(6 \cdot 0\) & 28 Hyd & 92024.043 & + \({ }^{\text {- }} 1\) & \(+3 \cdot 0007\) & -0027 & -0014 & - 441110.43 & -08 & -15.389 & - \(\cdot 274\) & - -010 & \(26: 28\) & 7'99: 8.02 & 2529 \\ \hline 492 & \(2 \cdot 0\) & \(30 \mathrm{Hydræ} \alpha\) & 2240.418 & +.008 & & 14 & '0011 & - \(813130^{\circ} 32\) & - \(\cdot 24\) & 15.475 & 266 & + .031 & 66:78 & 7'62:7779 & 2533 \\ \hline 493 & \(4 \cdot 6\) & Antliæ............... & \(25 \quad 7 \cdot 030\) & + 016 & 2.4735 & + `0059	- 0022	-35 30 50.06	+ 14	15.660	-219	-.019	33: 35	7•18: 7×15	2544
494	$5{ }^{\circ} 2$	5 Leonis.............. ξ	2633.355	+ 0.05	$3 \cdot 2383$	- 0100	- $\cdot 0065$	+11 4433.02	$+\quad 77$	15.806	- 286	-.087	$27: 33$	$8 \cdot 60: 8.81$	2555																																												
$495 \dagger$	3.5	Argûs...........m. ψ	26 45.568	+ 114	$2 \cdot 3599$	+ $\cdot 0065$	-.0164	-40 1 $143 \cdot 36$	- $\cdot 46$	15.664	- 205	+.066	24	$6 \cdot 95$	2558																																												
496	$2 \cdot 8$	VeloramN	92810.929	+ 039	+1.8213	+ ${ }^{\text {, 0027 }}$	--0048	-56 $35 \quad 35 \cdot 36$	- 03	-15.803	- 156	+.004	21	8.14	2567																																												
497	5.5	Lacaille	28 21.054	-00i	$2 \cdot 3783$	-0068	+.0001	-40 12 24.70	+ 14	15.835	- 206	--019	23:25	$7 \cdot 24: 7 \cdot 17$	256 S																																												
498	$5 \cdot 3$	Lalande 18817........	$2836 \cdot 155$	+.014	$2 \cdot 7610$	+ 0028	-.0019	-20 $40 \quad 23.08$	+ - 1	15.832	- 240	-002	20	$7{ }^{42}$	2569																																												
499	5•9	33 Hydræ.............. A	2933.271	-000	$2 \cdot 9943$	- 0023	-0000	-5 28	+ $\cdot 47$	15.937	- 260	-.057	20	8-19	2572																																												
500	$5 \cdot 6$	Carinæ............ H	30 51.356	+.050	0.4762	- 0558	- $\cdot 0068$	-72	+ 0.07	$15^{\prime} 960$	- 034	- - 010	24	$7 \cdot 30: 7 \cdot 26$	2579																																												

No.	Mag.	Nam	Mean R. A. $1900^{\circ} 0$.	$\mu_{a} \Delta \mathrm{E}$.	Annual Variation $1900^{\circ} 0$.	Sec. Var. 1900%.	Proper Motion.	Mean Dec. $1900^{\circ}{ }^{\circ}$.	$\mu_{\delta} \Delta \mathrm{E}$	Annual Variation 1900 o.	Sec. Var. 1900\%.	Proper Motion.	No. of Obs.	Epoch 1900十.	$\begin{aligned} & \text { Boss } \\ & \text { No. } \end{aligned}$
				+-013		+									
501	4^{11}	Carinæ	$93132 \cdot 565$	+.013	+1.7398	+.0014		$-58 \quad 47 \quad 1041$	-.08	-15.975	$\cdots 146$	+ ${ }^{\circ} \mathrm{OLI}$	22	$7 \cdot 20$	2581
502	$5 \cdot 4$	1 Sex	$3155^{\circ} 911$	+.036	3.1708	-0077	O	+ 7172.82	- 06	$16 \cdot 013$	271	- $\cdot 007$	21	8-08	2582
503	$4 \cdot 9$	2 Sextan	3314.265	+-092	3.1326	-0066	0110	+ 562.93	- 52	16.138	-265	-.063	16:18	8.37: $8 \cdot 23$	2589
504	$4 \cdot 4$	Velorum	3314.726	+ 090	1443	+ 00069	25	$-48544^{2} \cdot 09$	-17	$16 \cdot 053$	179	+.023	24	$7 \cdot 23$	2590
505	$5 \cdot 6$	Veloru	$34 \quad 7 \cdot 066$	- OI 8	$2 \cdot 3407$	+ 00075	24	-42 $44 \begin{array}{ll}22 \cdot 13\end{array}$	32	$16 \cdot 165$	196	044	22	$7 \cdot 37$	2594
506	4^{11}	35 Hydra	$93444^{\circ} 980$	-. 026	+ 3.0659	- •0041	O1	04120.39	$+60$	-16.226	- 258	- 072	15	$8 \cdot 32$	2595
507	$5 \cdot 1$	38 Hydræ	35 30•708	+ - 014	$2 \cdot 8759$	+ .0009	-0018	-13 5243.26	+ 13	16.209	-240	016	20: 22	7-97	2600
508	$3 \cdot 7$	14 Leonis	$3548 \cdot 807$	+.067	+ $3 \cdot 2061$	- 00092	--0098	+1020 50.07	+ 27	16.248	- 267	-.039	29:32	$6 \cdot 82: 6.87$	2602
509	$5 \cdot 3$	Chamæleontis $¢$	3650		-1.6117	- $\cdot 2984$	--0173	-80 2930.06	- 05	$16 \cdot 254$	+ 146	+.007	3.	$7 \cdot 28$	2606
510	$5 \cdot 8$	16 Leonis ψ	$3817 \cdot 210$	+.002	+3.2722	-0115	0002	+142845.42	+ 11	$16 \cdot 349$	-270	-. 014	27:29	8.07: 8.09	2612
51 I	$5 \cdot 1$	Autliæ............... θ	93944.589	+.031	+2.6714	+ $\cdot 0052$	-0045	82	16	-16.385	216	+.023	27	$6 \cdot 96$	2615
512	$3 \cdot 1$	17 Leon	40 10. 549	+-022	3.4140	179	-.0030	+2414 5.13	+ 18	16.454	- 278	- . 024	24:27	7.37:7*44	2618
513	ar:	Carin	4229.972	+.024	1.6472	02	-•0032	$\begin{array}{llll}-62 & 2 & 47 \cdot 67\end{array}$	16	$16 \cdot 525$	128	+ .021	21:	7'52:7•59	2628
514	$6 \cdot 0$	Lacail	$4236 \cdot 379$	+.007	2•3357	+ 00086	- $\cdot 0010$	$\begin{array}{lllllllllll}-44 & 17 & 33\end{array}$	- 00	16.551	- 185	00	33:35	7'25:7.29	2629
515	$6 \cdot 9$	23 Leonis	$4537 \cdot 358$	- ${ }^{-1} 4$	3. 2520	-0109	+.0017	+13 $3^{2} 179$	+ 22	$16 \cdot 725$	255	-027	23	$8 \cdot 05$	2639
516	$6 \cdot 2$	6 Sextar	$94611 \cdot 709$	- 007	$+3.0246$	-0025	+.0009	- $34^{6} 29 \cdot 32$	+ 22	-16.756	- 236	-.030	32:31	$7 \times 34: 7 \times 24$	2641
517	4.1	24 Leoni	$47 \quad 4 \cdot 544$	+.116	$3 \cdot 4208$	- 0196	-.0163	+26 $2840 \cdot 55$	+ 45	$16 \cdot 832$	- 265	- -063	19	7-12	2648
518	$4 \cdot 5$	Velorum	$4748 \cdot 884$	+.020	2.3129	+ 0093	-.0027	-46 $4 \quad 42 \cdot 78$	+ 20	$16 \cdot 831$	-177	-.027	25:26	7*54:7*47	2651
519	$6 \cdot 2$	Bradley	$51 \quad 7 \cdot 898$	+.048	3.1843	- .0085	-.0061	+ 92425.62	-06	16.953	- 240	+ 007	32:33	7-94	2663
520	$5 \cdot 5$	27 Leonis.	$52 \quad 50 \cdot 648$	+-017	$3 \cdot 2318$	- 0105	-0021	+12 $55^{18.67}$	$\cdot 23$	17.069	241	-.029	23	8.00	2672
521	3.5	A	953 21.066	+ $\cdot 017$	+ 2.1010	+ -0094	25	-545 29.97	. 04	-17.069	-153	00	23:24	$6 \cdot 86: 6 \cdot 83$	2674
522	$6 \cdot 7$	Laca	53 52.378	+ .018	2•2954	+ -0103	- 0024	-4756 13	+ 23	$17 \cdot 118$	-168	- -031	19:21	7.62:7*52	2676
523	$5 \cdot 3$	Antli	54 34.746	+ .060	2.5703	+ .0085	-. 0076	-35 2444×43	+ 21	$17 \cdot 146$	187	. 027	19:20	$7 \cdot 84: 7.82$	2679
524	$5 \cdot 0$	29 Leonis	5455.758	+ .018	1740	-0080	-.0023	+ $83126 \cdot 36$	+ 21	$17 \cdot 162$	- 233	-.027	43: 45	8.00:791	2680
525	$6 \cdot 1$	Lacaill	95943.739	+ 072	$2 \cdot 7668$	+ $\cdot 0055$	- $\cdot 0102$	$\begin{array}{llllllll}-23 & 4^{8} & 5 \cdot 38\end{array}$	-16	$17 \cdot 327$	-194	+ ${ }^{\text {022 }}$	34:36	7'02: $7^{\circ} 05$	2688
526	$4 \cdot 8$	40 Hydræ............. ${ }^{2}$	10 0 15:271	+.020	+ 2.9210	+ .0015	-.0025	-12 34 47*04	-09	$-17 \cdot 360$	205	+ - 012	24	7'90	690
527	$3 \cdot 5$	30 Leonis............... η	152.886	+ 001	2768	-0129	1	17 1515132	+ 09	17.455	228	-.012	33:35	7•14:7•16	2694
528	$1 \cdot$	32 Leon	$3 \quad 2 \cdot 728$	+ $\cdot 122$	$1+3 \cdot 1996$	- •0100	-. 0169	+122721.79	+ 02	17.496	- 219	-.003	33:32	$7 \cdot 20$	2698
529	5'7	Chan	324		- I. 4240	- 3466	-.0173	-81 43 50.17	$\cdot 22$	17.478	+ 110	+.030	13	$7 \cdot 32$	2699
530	5.1	Velormo	$5 \cdot 8 \cdot 726$	+/.007	+ $2 \cdot 2693$	+ .0123	-.0010	$\begin{array}{llllllll}-51 & 19 & 14.31\end{array}$	-04	$17 \cdot 587$	- 151	- $\cdot 005$	27: 29	7.21: $7 \cdot 23$	2702
531	3.	4 I Hydr	$10 \quad 542 \cdot 669$	+ - 104	+ 2.9244	+ .0014	-.0137	-11 51 35×94	+ 69	-17*699	- 195	- -093	44:43	7*59:7*46	2706
532	7	Lacaill	841.42	+ 55	-6.96	- 2.338	-.048	-86 $2532 \cdot 30$		$17 \cdot 726$	+.485	+.002	52:64	11.45:10.68	2715
533	3	Velorum	$1032 \cdot 155$	+ 111	+2.5124	+ 0118	-. 0140	-41 $3734 \cdot 77$		17.773	- . 160	+.031	23	7×90	2723
534	$3 \cdot 4$	36 Leonis............... δ	11787	14	3.3450	-0174	+.0016	+23 5456.50	+ 13	17.842	216	- . 015	16:17	$8 \cdot 87: 8.90$	2730
535	$3 \cdot 4$	Argûs................	11 21.549	+.047	I 4318	- 0076	-.0053	-69 $32 \begin{array}{lll}28 \cdot 67\end{array}$	+ 02	$17 \cdot 838$	-087	-.002	16:17	8.87: 8.83	2733
536	$5 \cdot 5$	22 Sextan	$101239^{\circ} 580$	+.089	+ 2.9814	0000	-. 0108	$-73410{ }^{1} 17$	- 02	$-17 \cdot 886$	- 188	+.002	17:19	$8 \cdot 20: 8.21$	2735
537	33	Carn	1344.564	+.052	1'9954	+ .0114	1	-60 $49 \begin{array}{ll}57 & 33\end{array}$	+ . 06	17.937	- 22	- 0007	21	$8 \cdot 49$	2739
538	$5 \cdot 7$	Lacai	16.12.004	- 006	2.4418	+ .0141	+ $\cdot 0009$	-47 $11146 \cdot 67$	+ 13	18.045	-148	-.019	27:30	7.09:7.06	2749
539	6.4	42 Leon	$1627 \cdot 682$	+.022	$3 \cdot 2312$	$\rightarrow .0115$	-.0027	+1528 47.04	+ 24	$18 \cdot 066$	198	-.030	20	8	2752
540	4.9	V	$18 \quad 2 \cdot 197$	+ 021	+ $2 \cdot 5069$	+ 0129	- $\cdot 0029$	$\begin{array}{lllllll}-41 & 8 & 48 \cdot 03\end{array}$	- 37	$18 \cdot 042$	- 153	+.053	27:29	7'11: 7\%04	2758
54^{1}	$7 \cdot 5$	G	$101847 \cdot 51$		-29.872	$-31 \cdot 819$		-89 $024 \cdot 06$		$-18 \cdot 124$	+1.869		39:49	11445:10'62	
54^{2}	5	Lacaille	196.421	+ 090	+ 2.6226	+ 0116	-.0127	$\begin{array}{llll}-37 & 30 & 8 \cdot 65\end{array}$	+ 45	$18 \cdot 199$	-154	-. 063	28	7-07	2763
543	4	42 Hydre.............. μ	2115.160	+ .068	$2 \cdot 8999$	+ .0040	- 0089	-16 1933.46	+ 66	$18 \cdot 299$	-168	- .084	58:67	$7 \cdot 69: 7 \cdot 85$	2771
544	$4 \cdot 0$	Carina...............I	22.24 .637	+.032	I $\cdot 2017$	- 0224	-.0043	-73 31 21:96	+ 16	$18 \cdot 278$	- 064	-021	21	750	2778
545	4.4	Antliæ...	2234.483	+.039	$2 \cdot 7416$	+ .0097	-.0053	$-303330 \cdot 63$	-00	$18 \cdot 263$	- 157	-000	20: 24	7-27:7 22	2779
546	$4^{\circ} \mathrm{O}$	Carin	102412.394	+.014	+ 21944	+ 0163	-0020	$-581343 * 43$	+ 06	$-18 \cdot 329$	22	- ${ }^{\circ} 008$	33	$7{ }^{17}$	2784
547	$5 \cdot 3$	29 Sextanti	$24 \quad 23 \cdot 974$	+.026	3.0481	- .0019	-.0032	- $21338 \cdot 35$	+ 15	18. 347	${ }^{1} 72$	- 019	20: 21	$8 \cdot 03$	2788
548	$3 \cdot 8$	47 Lennis...............p.	2732.778	+.004	3.1627	- . 0079	- 0005	+ 94916.28	+ 04	18.444	173	-006	39:41	$7 \cdot 03: 6 \cdot 96$	2804
549	3.4	Carinæ..............p	$28 \quad 27 \cdot 995$	+.024	$+2.1247$	+ .0168	-.0035	-61 10 15.03	- .05	18.462	-112	+ ${ }^{0} 007$	25:26	6.97: 7.05	2811
550	7•8	C. G. A. 14481	29670		- $4 \cdot 400$	- 1.540		$\left\lvert\, \begin{array}{ll}-86 & 2 \\ 52\end{array}\right.$		18.49 I	+.256		$46: 62$	11.42: 10×45	

No.	Mag.	Nam	Mean R.A. $1900^{\circ} 0$.	$\mu_{\alpha} \Delta \mathrm{E}$.	Annual Variation $1900^{\circ} 0$.	Sec. Var. $1900^{\circ} 0$.	Proper Motion.	Mean Dec. $1900^{\circ} 0$.	$\mu_{\delta} \Delta \mathrm{E}$.	Anntal Variatiou 1900\%.	Sec. Var. 1900.o.	Proper Motion.	No. of Obs.	Epoch	$\begin{aligned} & \text { Boss } \\ & \text { No. } \end{aligned}$
			$11{ }^{\circ}$	s	-13.396		s								
óor	8.4*	Gilliss P. Z. 7980....	112249° 10		13.396	$-21 \cdot 838$				-19.784	+ 324	...	25: 42	11 $152: 9.87$	
602	$7 \cdot 6$	G. A. 1576	2343.59		$6 \cdot 162$	-6.471		$-8841 \quad 35^{\circ} 47$		$19 \cdot 796$	$+150$		32: 47	$1152: 10 \times 40$	
603	$5 \cdot 1$	87 Leon	$2512 \cdot 326$	- 011	$+3.0650$	-0012	+.0013	-227 6.61	+ 14	19.833	- $\cdot 059$	- 017	22: 24	$8 \cdot 53: 8.47$	3029
604	3.6	Hydr	$284 \cdot 810$	+ 117	2.9436	166	-. 0159	-31 $181815 \cdot 66$	+ 37	19.904	051	- 051	27	$7 \cdot 35$	3042
605	$5 \cdot 5$	ntauri........... C^{2}	$31 \quad 4.670$	-019	$2 \cdot 8940$	0285	026	-47 5 5 14.01	+ $\cdot 40$	19.942	045	$\cdot 055$	22	$7{ }^{20}$	3053
60	$3^{1} 1$	Centauri λ	11 31 10998	+.050	$+2 \cdot 7447$	+ .045	6	-62		-19.910	-.042	02	19: 21	8.34:8.22	3054
607	4*5	91.	3149.727	-000	$3 \cdot 0716$	04	0000	- $161^{17} 74$	$\cdot 27$	19.861	46	+.035	27:25	7.95:7.81	3058
608	$5 \cdot 8$	Cham	33 7.808	+ 183	2.4497	+ .0680	0250	-75 $2034 \cdot 47$	+ 18	$19^{\circ} 933$	-033	-024	24:26	33	3064
609	$7 \cdot 5$	Lacaille	$3510 \cdot 35$		1*443	-019		-84 5557.95		$19^{\circ} 929$	$\cdot 014$		39: 62	$11^{4} 48: 10 \cdot 12$	
610*	$4 \cdot 9$	Hydræ	3514.691	+ -0, 8	2.9721	+ 0194	-.0024	-34 11125*52	OI	19.929	-038	+ ${ }^{\circ} \mathrm{OO}$	36:38	$7 \cdot 48: 7 \cdot 46$	3073
61	$5 \cdot 0$	27 Crateris ς	II 39 41.627	20	$+3.0368$	+ - -	+.0024	-17474157	+ 32	-20.007	-.031	- -039	16:17	$8 \cdot 31$	3087
61	$4 \cdot 3$	3 Virginis............ ν	$4043 \cdot 161$	+ 011	3.0851	- .0030	-.0012	+7 521.43	+ 1.68	$20 \cdot 163$	- 029	- 187	16:17	9'04:9*00	3089
613	$5 \cdot 5$	Lacail	$4046 \cdot 893$	t.045	2.9535	+ .0284	-.0064	-45 8 8 5 5.51	-	19.976	-028	-000	23	$7{ }^{\circ} \mathrm{O}$	3091
614	$3 \cdot 7$	Muscæ.............. λ	4052.967	+ 131	$2 \cdot 8041$	56	- 0161	-66 $10 \quad 27 \cdot 45$	- $\cdot 22$	$19^{\circ} 949$	25	+.028	21:23	-12:792	3092
615	$4^{\text {- }}$	Laca	$4140 \cdot 399$	+ 0.032	2.8791	47	-0036	-60 $37 \quad 20 \cdot 70$	26	20'012	025	029	16		3094
616	5.6	Lacai	11 43 41:967		$+3.0249$	- 0	- 0007		- 21	20'022	23		24:25	7.95:8.00	3100
617	$2 \cdot 2$	94 Leonis............... β	43 57. 284	+ 289	0634	1	-.0342	+15 $750 \cdot 72$	+ I.06	20	22	123	28:31	$8.46: 8 \cdot 65$	3101
618	$3 \cdot 6$	5 Virginis............. β	45 29.592	- 402	3•1253	,	+.0495	+ 2193952	+2.25	20.286	-021	279	26:25	8.13: 8.05	3105
619	4.5	Centauri............ B	46 8.592	+ $\cdot 067$	2.9835	+ 0288	- - 0092	-44 37 1*49	-00	20.010	$\cdot 018$	-000	27: 29	$7 \cdot 26: 7 \cdot 23$	3109
620	$5 \cdot 7$	95 Leonis	$5031 \cdot 995$	- 014	$3 \cdot 0901$	-0074	+.0017	+16 12 11.55	+ 06	20'037	-010	. 007	30:31	8.21	3123
6	5	Laca	If 53 II 800	+ -011	+3.0126	+ .0436	-.0015	-55 4537×94	+ 19	-20.064	05	- .026	33	$7 \cdot 42$	129
622	$6 \cdot 3$	Lacai	54, 6.131	+ 018	3.0271	+ 0375	-.0026	-51 8123.07	+ - II	$20 \cdot 055$	003	-.015	20: 21	$7{ }^{\circ} 04: 7^{\circ 00}$	3133
623	$5 \cdot 5$	7 Virgiais............ b	5449.589	+ 010	3.0735	006	0011	+ 41243.28	+ 16	20.060	02	-.018	18: 19	$8 \cdot 85$	3135
624	$4{ }^{\circ} 7$	8 Virginis	5544.935	+.003	3.0752	-022	- $\cdot 0003$	+7 10 18.62	+ 29	20.076	00	-.033	20	$8.98: 8.83$	3139
625	6.0	Laca	$5718 \cdot 62$	+ ${ }^{+} 59$	2.839	6	-.051	$\begin{array}{lll}-85 & 4 & 29.63\end{array}$	+ 01	20.047	$\cdot 004$	-	47:74	11'52: $10 \cdot$	3144
626	$4^{\circ} 4$	Crucis	If 5755.676	+ 155	+3.0277	+ .058r	- 0212	-62	+ .06	-20.054	-004	- - 008	23: 25	'32:7^16	3146
627	$5 \cdot 4$	Lacaill	115888.970	- . 235	0930	+ .0289	+.0286		+ I 03	$20 \cdot 171$	006	-.125	21:22	8.20: 8.25	3148
628	4*3	9 Virginis 0	$12 \quad 0 \quad 6.823$	+ 109	5	- .0030	-.0147	+ 91718.65	- 29	20'009	-009	+.038	40: 46	7'39:7*52	3155
629	5'7	Centauri............E	$3 \quad 3 \cdot 887$	+ 021	0894	+ .0357	- $\cdot 0029$	$\begin{array}{llll}-48 & 8 & 8 \cdot 30\end{array}$	+ 24	20.079	015	- .034	25	-10	3163
630	$2 \cdot 7$	Centauri δ	$310 \cdot 460$	+ ${ }^{+}$	3.0904	-0382	- 0041	$\begin{array}{lll}-50 & 9 & 55^{\circ} 70\end{array}$	+ 15	20.062	-015	-017	15	8.61	3165
631	6	Lacai	$12 \quad 343 \cdot 293$	+ .051	$+3.0872$	+ .0310	--0059	-43 $46 \quad 5 \times 74$	+ . 56	-20.111	+ 016	- 067	17 : 20	. 64 : 8	3167
632	$6 \cdot 3$	Io Virgin	$433 \cdot 872$	8	3.0742	8	+.0030	+ $22731 \cdot 90$	+ 1.73	$20 \cdot 227$	018	- 184	16	9•39	3169
633	$3^{\cdot 1}$	2 Corvi	$458 \cdot 812$	+.035	3.0794	0143	-.0047	$\begin{array}{llll}-22 & 3 & 48 \cdot 94\end{array}$	- . 05	20.035	-018	+-007	$30: 32$	$7 \cdot 45: 7.65$	3172
634	$6 \cdot 9$	Lacaille 5096.........			$4 \cdot 4$	1-534	-.072	$\begin{array}{llllllllllllll}-87 & 51 & 33\end{array}$	- 00	20.030	-035	-000	21:42	11-55: 9.22	3185
635	$2 \cdot 9$	Crucis δ	949.929	+ $\cdot 042$	3.1593	-0532	-.0055	$-5811133 \cdot 25$	+ 15	20.047	-028	$\cdot 019$	19:21	$7 \cdot 69: 7 \times 72$	3187
636	$2 \cdot 6$	4 Corvi γ	12 10 39.641		$+3$	$+$	12	-1	- 10	-20.014	+ 029	+ - 011	20: 19	$8 \cdot 84: 8.81$	3191
637	4		$12 \quad 9.522$	+ 331	3.2022	2	-. 0405	-67 $24 \begin{array}{llll}15 \%\end{array}$	+ 35	20.063	33	-	18:20	8•18:791	3197
638	$4 \cdot 3$	Chamæleontis...... β	12 28.392	+ 146	3.4218	65	-.0163	$-7845 \quad 25^{\circ} 18$	- 11	$20 \cdot 005$	036	+.012	$35: 37$	$8.95: 8 \cdot 84$	3199
639	$4^{\circ} \mathrm{O}$	15 Virginis............. ${ }^{1}$	1447.339	+.032	3.0684	-0028	- 0041	- $06640 \cdot 32$	+ 19	20.030	- 37	-.025	33:32	$7 \cdot 88: 7.64$	3210
640	5.1	16 Virginis.............c	1516.095	+ 171	$3 \cdot 0465$	-0008	-.0198	+ 3 52 9203	$+\quad .67$	$20 \cdot 080$. 038	-.078	21:23	$8 \cdot 64: 8 \cdot 61$	3213
641	3.4	Crucia'...............є	121557.451		$+3 \cdot 2081$	+ .0585	-. 0243	-59 50 54.39		- 19.920	+.041	+.078	21: 23	7'77:7.68	3218
642	4.9	12 Com	17 28.725	+.005	$3 \cdot 0212$	- 0114	-.0006	+26 $24 \quad 3.88$	+ ${ }^{12}$	20.003	042	-14	20: 22	8.52:8.50	3224
643	$6 \cdot 7$	Laca	1737.06	+ 19	$4 \cdot 388$	+ 720	--0.6	-85 $3545 \cdot 58$	+ .06	19×994	-057	- 006	45:69	11-59: $10 \cdot 10$	3225
644	$6 \cdot 3$	Lacai	1950.416	+.085	3.1762	. 0315	-.013*	-415734.48	+ 26	$19^{\circ} 972$	48	- $0.04 *$	19	$6 \cdot 57$...
$645{ }^{\dagger}$	6.0	Centauri.......m. x^{2}	$20 \quad 5 \cdot 478$	+.025	3.1499	+ . 0246	-.0033	-34 $3755^{\circ} 77$	+ 10	19.983	-049	- 013	17: 19	7•72: 7×69	3232
646	5°	14 Com	$122124^{\circ} 050$	+.015	+ 3.0049	- '0119	-.0017	+27 49 19*79	+ -16	19×978	+ 049	- 018	16	8.96	3240
647	$5 \cdot 8$	Lacai	$2135 \cdot 397$	+.008	3.1508	+ 0228	-.0009	$-321632 \cdot 67$	+ 35	19.997	-052	- -039	16:17	8.94: 8.88	3241
648	$4 \cdot 6$	15 Com	$2157 \cdot 229$	+ .062	$2 \cdot 9954$	-0124	- 0066	+28 4926.48	+ 82	$20 \cdot 042$	-050	- 088	16	$9 \cdot 44$	3242
649	$4 \cdot 1$	Centauri.	$2237 \cdot 779$	+ .026	3.2238	+.0415	-.0038	-49 $4036 \cdot 54$	+ 19	19.977	-055	- $\cdot 028$	21:22	6.81: $6 \cdot 76$	3245
650	$6 \cdot 3$	Mayer 525	$2243 \cdot 628$	+.049	3.0763	- 0053	-.0054	-4-4	+ .08	19.957	-053	- 0009	16: 18	9.08: $9 \cdot 04$	3247

610. Greek letter not in Auwers' Bradley
611. $6 \cdot 7,6.9 \quad 0^{\prime \prime} \cdot 2 \quad 41^{\circ} \quad 1897.5$.

No.	Mag.	Name.	Mean R.A. $1900^{\circ} 0$.	$\mu_{a} \Delta \mathrm{E}$.	Aunual Variation $1900^{\circ} 0$.	Sec. Var. $1900^{\circ} 0$	Proper Motion.	Mean Dec. 1900°.	$\mu_{\delta} \Delta \mathrm{E}$.	Annual Variation $1900^{\circ} 0$.	Sec. Var. 1900%.	Proper Motion	No. of Obs.	Epoch $1900+$.	($\begin{aligned} & \text { Boss } \\ & \text { No. }\end{aligned}$
651	3*0	7 Corvi............seq. 8	$\left\lvert\, \begin{array}{ccc} \mathrm{b} & \mathrm{ml} & \mathrm{~s} \\ 12 & 24 & 4 \mathrm{I}^{\circ} \cdot 221 \end{array}\right.$	$+{ }^{-110}$	+3.0990	+ -0119	-. 0144	-15 $577^{\prime} 33^{\prime \prime} \cdot 67$	$+1^{\prime \prime} 10$	- 20.074	+" ${ }^{\circ} 7$	- "'143	27 : 29	766	3256
652	5'9	20 Com	2441.857	- $\cdot 022$	3.0186	-0080	+ $\cdot 0027$	+21 $2659 \cdot 36$	+ 36	19.976	056	- 046	16:20	8.21:7*93	3257
653	$1 \cdot 3$	Crucis............. γ	$2537 \cdot 019$	- 018	3.3003	+ .0549	+ 0023	-56 3313.65	+ $2 \cdot 15$	20'194	062	272	17	$7 \cdot 92$	3263
654	$4^{\circ} \mathrm{O}$	Muscæ γ	26 29.339	+ 074	$3 \cdot 5260$	-1188	--0092		+ - 10	19.926	68	-013	$23: 25$	8•00: $7 \cdot 96$	3269
655	$2 \cdot 8$	9 Corvi............... β	$297 \cdot 987$	-00	$3 \cdot 1437$	+ -0165	-000	- 225030181	+ 47	19.946	-067	-61	39:36	8-20:776	3280
656	4.9	23 Com*	122952.098	+ 044	+ 2.9928	-0085	--0052	+23 10 $47 \cdot 78$	- .06	19.871	+ - 065	+ ${ }^{\circ} 007$	17	$8 \cdot 48$	3283
657	$5 \cdot 3$	24 Comx -...........seq.	306.833	- 002	3.0127	.0062	+-0003	+18 $5539 \cdot 23$		19.858	66	+ 016	21 :	$7 \cdot 69: 7 \cdot 62$	3285
658	$2 \cdot 7$	Muscex	3112.950	+-063	3.5285	+ 1013	-.0065	-68 $35 \begin{array}{ll}4 & 4\end{array} 3$	+ 20	19.882	-078	021	16:17	$9 \cdot 62$	3289
659	6.	25 Virginis.............f	$313^{8.263}$	+ - 017	3.0873	64	-.0020	$5165_{1} \cdot 09$	+ 23	19.883	- 070	- 022	16	$8 \cdot 59$	3290
660	$4^{\circ} \mathrm{O}$	Centauri............ τ	$3213 \cdot 777$	$+\cdot 135$	$3 \cdot 2606$. 0404	- 0197	73	+ 12	19.867	075	- -018	22	$6 \cdot 84$	3292
661	4.8	26 Virginis χ	12345 5020	+ ${ }^{-042}$	$+3.0931$	+ -0077	021	-		- 19.863	-075	7	21	$8 \cdot 29$	3298
$662+$	$2 \cdot 1$	Centauri.........m. γ	3559.857	+ 142	3.2878	+ .0416	O201	-482438.07	+ 10	19.815	-083	$\cdot 015$	27:28	7004: 6.96	3302
663	5.	30 Virginis............. ρ	$3649 \cdot 44^{2}$	- -053	3.0377	-0015	+.0061	+10 47 II•12	+ 86	19.890	79	1	22	$8 \cdot 67$: 8.53	3309
664	5	pia	$3840 \cdot 595$	+ ${ }^{\text {o2 }}$	$3 \cdot 1876$	+ .0206	30	-27 46 30.77	+ 3^{8}	19.816	-086	- 054	25:27	7.09:7.06	3318
$665+$	3.	Musce...........m. β	408.616	+ -039	$3 \cdot 6312$	- 1010	5	$-673338 \cdot 43$		19.769	гоя	O29	18	$7 \cdot 58$	3320
666	5	32 Virginis,...........d ${ }^{2}$	124033.849	+ 066	$+3.0308$	000	0076	+ $81312{ }^{12}$		19.733	-086		17	$8 \cdot 64$	3323
667	7.1	Lacaille	$4058 \cdot 76$	+ 86	$21 \cdot 172$	$+28.711$	072	-89 1500.86	-11	19.738	556	- - 01	38:53	11.61: 9 9'99	3325
668	$1 \cdot 1$	Crucis.	$4152 \cdot 502$	+ ${ }^{-051}$	3.4726	+ ${ }^{\text {a }}$ 60	062	-59 $\mathbf{8}^{8} 31 \cdot 60$	+ 23	$19^{\circ} 741$	100	028	19	$8 \cdot 17$	3328
669	6.8	35 Virgi	$4245 \cdot 884$	+ ${ }^{003}$	3.0542	-0022	--0003	+4 77114	+ 10	19.711	-991	O12	17: 18	$8 \cdot 61$	333^{1}
670	5.5		$4427 \cdot 84$		$5 \cdot 83$ r	866	+.044	-84 $34.48 \cdot 46$	\bigcirc	19.661	173	+ 010	54:167	$11.58: 8.80$	3340
671	5.1	Centauri	124515×498	+ ${ }^{025}$	+ 3.2426	+ 0258	0030	-33 2714.90	+ 30	- 19.693	+ 101	- ${ }^{036}$	17 : 18	$8 \cdot 38: 8 \cdot 23$	342
672	5	31.	$4649 \cdot 668$	+ 011	2.9264	- oug6	-.0012	$+28 \quad 5 \quad 111$	+ 24	19.656	-095	6	16	$9 \cdot 11$	3347
673	4	Cent	$4753 \cdot 847$	- 040	3.3078	+ 0323	+ 0058	$\begin{array}{lllll}-39 & 38 & 6 \cdot 1^{8}\end{array}$	+ 26	19.649	-109	- 03^{8}	$21: 23$	$6 \cdot 90$	335^{2}
674	$5^{\circ} \mathrm{O}$	40 Virginis............ 4	49 9.098	+ ${ }^{-13}$	$3 \cdot 1158$	0093	-0016	$-85945 \cdot 4^{3}$	+ 17	19.609	105	021		$8 \cdot 04$	3362
675	$3^{\cdot 6}$	43 Virginis.......... . δ	$5033 \cdot 726$	+ 244	$3 \cdot 0205$	027	--0317	+ $35626 \cdot 5^{\circ}$	+ 48	19.625	- 104	- 064	46		3367
676	3.5		$125523 \cdot 669$	- 38 r	+ 4.0554	+ 1427	+.0536	-71 034.67		- 19.494	+ ${ }^{152}$	- 030	29	7-10	77
677	$2 \cdot 8$	47 Virginis.............	5711.793	$+144$	$2 \cdot 9867$	- 0006	--0185	+1129 47.95	13	$19 \cdot 409$	$\cdot 115$	+ -017	38:36	7•79: $7^{\circ} 66$	3383
678	$7 \cdot 1$	Lacaille 53	$57 \quad 20 \cdot 34$...	35	+ 2.862		-87	...	$19 \cdot 423$	349		57:77	11 61 : $10 \cdot 60$	
$679+$	$6 \cdot 9$	48 Virginis.........m...	$125^{8} 45 \cdot 195$	+ 026	878	66	--0030	- 3 7 731.40	+ 34	43^{2}	- 122	- 0.00°	24	$8 \cdot 50$	3388
680	4.4	Centauri............ ξ^{2}	13114.223	+ ${ }^{026}$	3.4789	-0475	.036	492214×19	+ 17	$19 \cdot 364$	142	4	28	$7 \cdot 19$	3393
6SI	$6 \cdot 1$	acaille 53	13141.601	+ $\cdot 036$	+ 3.5379	+ -0547		-52 $5527 \cdot 56$	+ ${ }^{24}$	-19.357	$+145$	32	26	7×43	00
682	4.4	5^{1} Virginis.......seq. θ	$446 \cdot 279$	+ ${ }^{\text {- }}$ 23	3. 1024	79	--0026	- 5 -118.99	+ 37	. 294	- 134	- . 042	40:37	$8 \cdot 83: 8.75$	3409
683	53	Lacaille	539.974	+ -091	110	-0376	--0116	-42 $50 \quad 9.34$	+ 34	19.273	148	- - 043	18	$7 \cdot 87$	3417
684 +	$4 \cdot 7$	Lacaille $5418 . . .$. seq.	$6{ }_{6} 2 \cdot 784$	+-056	3.7076	+ 0736	0067	-59 $23 \begin{aligned} & 18 \cdot 59\end{aligned}$	+ 29	19.254	-161	- 034		8.42	3419
685	4	43 Comæ.................	711.977	+ 438	2.8032	- 0076	0604	+28 2312.64	-6.36	$18 \cdot 316$	-124	+ $\cdot 875$	22': 23	$7 \cdot 25: 7 \cdot 27$	3424
686	5.0	ияcæ............... η	$13 \quad 8 \quad 27 \times 958$	+-033	+ 4.0112	+ ${ }^{1154}$. 0045	-67 $21 \begin{aligned} & \text { 52 } \\ & 54\end{aligned}$	+ 14	-19.178	+ 180	019	24	$7 \cdot 32$	3429
687	5	Centauri	1119.783	- 015	$3 \cdot 3201$	-0254	+-002	-30 $58 \quad 37 \cdot 09$	$+47$	$19 \cdot 148$		- -064	25	$7 \cdot 35$	3440
688	6	Lacaille 5	1125.876	+-003	$3 \cdot 4602$	-0392	005	-43 27 5 ${ }^{\text {20 }}$	+ $\cdot 22$	$19 \cdot 112$	-163	- $\cdot 031$	18	$6 \cdot 98$	3441
689	50	60 Virginis	1233.304	+ -008	$3^{\cdot 0277}$	-028	--0009	+ $55947 \cdot 96$	-8	19.042	-146	+-009	16:17	$8 \cdot 63: 8 \cdot 66$	3446
690	4.8	61 V	$13 \quad 9.677$	+ \cdot^{676}	$3 \cdot 1313$	-0156	754	-17 4528.04	+9.72	$20 \cdot 118$	148	-1.084	16	8.97	34
691	3.2	46 Hydre...............	131329.085	- 041	+ 3.2529	+ .0189	+.0048	-22 38 39.01	+ 44	-19.076	$+\cdot 158$	-051	39	8.60: $8 \cdot 59$	34
692	2.8	ent	$145^{8.248}$	+ 208	$3 \cdot 3584$	-0303	-.0281	-3611 6.19	+ 71	19.078	$\cdot 164$	- 094	$23: 24$	7-41: 7×53	345
693	6.2	Lacaille 549	16 11-172	+ ${ }^{-023}$	3.6207	-0541	-.0031	-51 $3932 \begin{aligned} & \text { 2 }\end{aligned}$	- or	18.947	180	+ $\cdot 002$,	$7 \cdot 35$	3458
694	$6 \cdot 7$	Lacai	17.4 .006	+ $\cdot 005$	$3 \cdot 5622$	0471	0006	$-48 \quad 222.28$	- .06	18.916	179	+ -008	23: 24	7-97: $7 \cdot 92$	346
695	7.4	Lacaille 545	$1942 \cdot 39$	+ -05	$8 \cdot 618$	1-580	-.004	-851826.29	+ 07	18.853	436	-007	36:59	11'57: 10.06	3473
696	$\bigcirc{ }^{\circ} 9$	67 Virginis....	131955418	+ - 019	+ 3'1553	+ 0116	- 0028	-10 38 22.28	+ ${ }^{25}$	-18.876	$+\cdot 165$	- 036	29	6.91	3476
697	8.0	Lacaille 544	$2124 \cdot 49$		10.091	$2 \cdot 356$		-86 12389.93		18.795	519		$28: 40$	1166:10.22	
698	$5 \cdot 7$	68 Virginis...	21 26.045	$+\cdot 8_{3}$	$3 \cdot 1636$	O125	-0092	-12 1211118.80	+ 19	18.817	168	022	33: 26	9.00: 8.52	3481
699	5.2	70 Virginis.	23 32.189	+ 146	2.9341	0001	-.0167	+141840.99	+5.13	$19 \cdot 316$	160	- 588	17: 18	$8776: 8.75$	344^{7}
70	$5 \cdot 7$	Octantis.	$2441 \cdot 34$	$+\cdot 85$	$8 \cdot 838$	1.606	--073	-85 $16 \begin{gathered}\text { 24.77 }\end{gathered}$	+	18.717	469	4	59:148	11.62:904	3493

665. 3'7, 4.0	$\mathrm{I}^{\prime \prime} \cdot 3$	341°	$1900{ }^{\circ} 4$.
$679.7 \cdot 6,7 \cdot 8$	$0^{\prime \prime} .6$	$219{ }^{\circ}$	$1899{ }^{\circ} 4$.
$682,4 \cdot 4,8 \cdot 9$	$6^{\prime \prime} \cdot 8$	344°	1905%.
$684.477,8 \cdot 5$	I'7	$349{ }^{\circ}$	$1913{ }^{\circ} \mathrm{O}$

No.	Mag.	Name.	Mean R.A. $1900^{\circ} 0$.	$\mu_{a} \Delta \mathrm{E}$.	Annual Variation 1900 o.	Sec. Var. 1900.o.	Proper Motion.	Mean Dec. 1900*。.	$\mu_{\delta} \Delta \mathrm{E}$.	Annual Variation 1900\%.	Sec. Var. 1900 .	Proper Motion.	No. of Obs.	Epoch $1900+$.	Boss No.
			h m s	1	3.4628	+ -									
7014	3.8	ntaur	I3 2514.605	10	3.4628	-0342	OOI3	$85327 \cdot 11$		-18:701	+ ${ }^{191}$	- ${ }^{\circ} 025$	20	S-01	3496
702	$6 \cdot 1$	73 Virginis	$2639 \cdot 117$	+ -055	3. 2284	-0163	-.0063	$-181248 \cdot 71$	- 20	$18 \cdot 654$	181	-.023	16:17	$8 \cdot 76$	3498
703	5.9	Lacaille 55	27 I. 586	+ -065	3.3294	-0236	-.0083	-28 10 $39 \cdot 43$	+ 16	$18 \cdot 640$	187	-021	19	$7 \cdot 78$	3502
704	$3 \cdot 3$	79 Virginis............. 5	$2935 \cdot 679$	+ .146	$3 \cdot 0540$	-0064	- 0191	-0 0	- 25	$18 \cdot 500$	-176	+ ${ }^{\circ} \cdot 3$	47:45	$7 \cdot 63: 7 \times 39$	3508
705	$6 \cdot 6$	Lacaille 5577.........	$3038 \cdot 171$	+ -06I	5.0096	-2413	--0078	-75 10 25.47	+ 28	$18 \cdot 536$	289	- $\cdot 036$	21	785	3514
706	$2 \cdot 3$	Centauri............. 6	I3 33 32.963	+ $\cdot 024$	+ 377719	+ 0592	- $\cdot 0034$	$\begin{array}{llll}-52 & 57 & 28 \cdot 39\end{array}$	+ 19	-18.427	+.226	-.027	23: 24	7'18: $7^{\text {¹4 }} 4$	3521
707	$8 \cdot 7$	C. G. A. 18500	$35 \quad 1 \times 39$		13.771	$4 \cdot 327$		$\begin{array}{llll}-87 & 7 & 9 \cdot 08\end{array}$...	$18 \cdot 348$	-816		$28: 44$	$11.67: 10 \cdot 25$	
708	5.3	82 Virginis.............. m	$3621 \cdot 704$	+ 050	3.1440	-108	-.0069	- 8 II $54 \cdot 36$	-30	$18 \cdot 265$	-194	+.036	27: 22	$8 \cdot 6 x: 8 \cdot 27$	3534
709	$5 \cdot 9$	83 Virginis.................	396.005	-.004	$3 \cdot 2300$	-0151	+.0005	$-154034 \cdot 38$	+ 04	$18 \cdot 207$	$\cdot 205$	-.005	17	$8 \cdot 63$	3542
710	4*3	I Centauri.............i	3959.915	+ $\cdot 286$	3.3959	-6277	-0368		+1.18	$18 \cdot 321$	$\cdot 215$	- 153	18 : 19	$7 \cdot 76: 7.72$	3544
711	$4^{\circ} 7$	Centauri._......... ${ }^{\text {M }}$	134019.437	02	$+3 \cdot 7704$	-0550	+.0002	-50 55 51.89	31	$-18 \cdot 189$	+ ${ }^{241}$	- ${ }^{\circ} 3^{2}$	16	9*55	3547
712	4.6	4 Boötis.	$4230 \cdot 310$	+ $\cdot 295$	$2 \cdot 8510$	-0005	-*0340	+175718.95	- 22	18.049	-185	+.026	19:20	8.69: 8.54	3558
713	$3 \cdot 5$	Centauri............. ν	43 30.280	+.027	$3 \cdot 5798$	+ 0.0380	-.0030	-4I 11121.86	+ 23	$18 \cdot 062$	235	- 025	16	$9 \cdot 14$	3564
714	$3 \cdot 3$	Centauri.	$4335 \cdot 443$	+ .018	$3 \cdot 5955$	-0392	- 0020	-41 $5^{8} \quad 32 \cdot 07$	+ 16	$18 \cdot 052$	- 236	018	18	8.98	3565
715	$5 \cdot 2$	89 Virginis................	$4426 \cdot 149$	+.056	$3 \cdot 2524$	-0164	-.0069	-1738 10. 55	+ 35	$18 \cdot 044$	$\cdot 216$	- '043	35:34	$8 \cdot 12: 8 \cdot 15$	3571
716	$4 \cdot$	4 Centauri............ h	$134727^{\circ} 060$	+ ${ }^{\text {OII }}$	$+3.4400$	-027 I	-'0014	-31 26 I.95	+ 17	-17.905	+ ${ }^{2} 34$	1	18	$8 \cdot 07$	3586
717	$6 \cdot 0$	7 Boötis.	48 26.200	+.024	$2 \cdot 8667$	- 0005	- $\cdot 0027$	+18 2532.08	+ .11	17.857	-198	-.013	17	$8 \cdot 84$	3588
718	$2 \cdot 6$	Centauri............. δ	4917.942	+.043	3.7195	. 0471	--0060	-46 $47 \begin{array}{ll} & 45 \cdot 76\end{array}$	+ 3^{8}	$17 \cdot 863$	- 256	- 053	21	7'19	3593
719	$2 \cdot 7$	8 Boötis............... η	$4955 \cdot 350$	+.038	$2 \cdot 8567$	- $\cdot 0003$	-.0045	+18 $5352 \cdot 81$	+3.11	$18 \cdot 152$	- 199	-. 367	$33: 34$	$8 \cdot 53: 8 \cdot 48$	3596
720	$4 \cdot 7$	Lacaille 5733	5024.453	+.047	$4 \cdot 2927$	- 1008	--0053	$-631147 \cdot 51$	+ $\cdot 46$	$17 \cdot 817$	- 297	- .052	17	$8 \cdot 81$	3599
721	6.1	92 Virginis.	13 51 $22^{\prime} 142$	+ -020	$+3.0533$	-0065	--0023	+ I 3222.42		-17.714	+ 215	+ $\cdot 012$	16	$8 \cdot 77$	600
722	$4^{\circ} \mathrm{O}$	Centauri	$5211 \cdot 415$	+-017	$3 \cdot 6281$	-0389	--0024	-41 $3644 \cdot 31$	+ 15	$17 \cdot 712$	- 256	020	19	$7 \cdot 27$	3602
723	$4^{\circ} \mathrm{O}$	Centauri............ ${ }^{1}$	$5230 \cdot 028$	+.024	3.6844	-0430	-.003I	-44 I8 $55 \cdot 78$	+ 25	$17 \cdot 712$	- 260	-.032	19	$7 \cdot 83$	3603
724	$5 \cdot 3$	47 Hydræ.................	5254.361	+.028	3•3566	-0214	-.0036	-24 29 3.09	$+32$	$17 \cdot 704$	238	-.041	19	$7 \cdot 88$	3604
725	$6^{\circ} \mathrm{O}$	48 Hydræ.	54 23.906	+ 123	$3 \cdot 3490$	-0214	-.0152	-24 31 21.22	+ 90	17.712	240	11	19	$8 \cdot 07$	3607
726	var.	Apodis θ	I3 5534.288	+ 242	+ 5.698I	+ 2975	-.0261	$-7618 \quad 50 \cdot 82$	+ 37	-17.591	+ 407	- $\cdot 040$	32	$9 \cdot 27$	3611
727	$4 \cdot 3$	93 Virginis.............. τ	$5633 \cdot 400$	- $\cdot 009$	3.0506	+ 0065	+.0013	+ 2141.98	+ 18	$17 \cdot 535$	- 224	-. 025	$22: 23$	7'19:7*14	3612
728	$6 \cdot 3$	II Boötis	$5638 \cdot 365$	+.045	220	- $\cdot 0031$	- $\cdot 006$	+27 $5210 \cdot 48$	- - 02	$17 \cdot 503$	- 200	+.003	19	$7 \cdot 56$	$3^{61} 3$
729	$0 \cdot 5$	Centáari.............. β	$5645 \cdot 773$	+.033	29	+ $\cdot 0848$	- 00035	$-59 \quad 53 \quad 26 \cdot 33$	+ 30	17×533	305	-.032	17	$9 \cdot 46$	3615
730	4.6	Centauri $\boldsymbol{\chi}$	I3 5956.345	+ 017	$3 \cdot 6453$	-0378	-.0016	-40 $42 \quad 1 \cdot 79$	+ 23	17•398	- 273	- 034	20	$6 \cdot 65$	3621
731	3.4	49 Hydræ............. π	$14 \quad 04^{\circ} 524$	-. 025	$+3.4059$	+ .0230	+•0031	-261223.13	+1.27	-17.491	+ $\cdot 257$	- $\cdot 160$	19	7×96	3622
732	$2 \cdot 0$	5 Centauri θ	-47.377	+ 404	3.5150	- 0318	-.0436	-35 52 45:76	+ 4.89	17.854	- 262	- 528	16	$9 \cdot 27$	3623
733	$6 \cdot 9$	94 Virginis	- $59 \cdot 980$	+.005	3.1714	-0115	-.0005	- $8245^{1 \cdot 27}$. 08	17.308	240	+ $\cdot 009$	16:15	9:29:9.	3624
734	$5 \cdot 0$	Apodis.............. η	539°		7.2354	+ . 5751	-.0170	-80 $32 \begin{array}{lll}20 & 51\end{array}$	+ 59	$17 \cdot 180$	556	-.078	5	$7{ }^{\text {5 }}$	3633
735	$4 \cdot 9$	12 Boötis..............d ${ }^{\text {d }}$	5 50.22I	+ -012	$2 \cdot 7370$	- $\cdot 0017$	--0017	+25 3354.74	+ 51	$17 \cdot 172$	215	072	26	$7{ }^{\circ} \mathrm{O}$	3635
736	4^{2}	98 Virginisk	$14 \quad 733 \cdot 621$	- ${ }^{\circ} 004$	+ 3.1949	+ -0123	+.0005	- $94^{8828.95}$	- I.06	-16.891	+ ${ }^{2} 53$	$+130$	37	$8 \cdot 22: 8 \cdot 12$	3642
737	$4 \cdot 1$	99 Virginis...............	$\text { Io } 46 \cdot 188$	+.009	$3 \cdot 1409$	- 0106	-.0012	- $533^{1} 27.57$	$+3.08$	17.298	- 254	- $\cdot 427$	21: 23	$7 \cdot 33: 7 \cdot 22$	3660
738	$4^{*} 1$	Octantis \qquad . δ	$105 \mathrm{I} \cdot 03$	+ 60	$9 \cdot 087$	1.043	$-.052$	-83123512	+ 15	$16 \cdot 880$	719	- oi3	44:47	1 $1063: 11 \times 37$	3661
739	$0 \cdot 0$	16 Boötis...............a	115.443	+.578	$2 \cdot 7352$	-0025	-.0781	+19 41 55.82	+14.82	$18 \cdot 858$	-217	$-2 \cdot 003$	24	740	3662
74°	$3 \cdot 8$	Lupi..................	1259.947	+.007	$3 \cdot 8196$	-0454	--0009	-45 $3547 \cdot 41$	+ .06	$16 \cdot 773$	-312	-.008	20	$7 \cdot 58$	3668
741	44	Centauri............v	1413 20. 242	+ 020	$+4.1552$	+ .0703	-.0029	-55 55 32.64	+ ${ }^{15}$	-16.770	+ 340	- 021	21	$7{ }^{\circ} \mathrm{O}$	3670
74	$4 \cdot 6$	Ioo Virginis λ	I3 41-840	+-013	3.2396	-0141	-.0015	-12 $5433^{\circ} 09$	- 20	$16 \cdot 708$	- 267	+-023	23: 20	8.89: $8 \cdot 70$	3672
743	$8 \cdot 1$	Brisbane 461	$1348 \cdot 13$		42•175	$34^{\circ} 972$		-88 5514.51		$16 \cdot 726$	3. 396		$38: 55$	$11.63: 10.37$	
744	$5 \cdot 8$	Lacaille 5890	$1648 \cdot 517$	+ -019	4.9054	- 1396	--0024	-67 4425.49	+ 17	$16 \cdot 602$	409	-022	19: 20	$7 \cdot 84: 7 \times 73$	3686
745	$4 \cdot 6$	Centauri............a	1652.419	+ -017	3.6797	-0356	-. 0024	$\begin{array}{lll}-39 & 3 & 18\end{array}$	+ 28	$16 \cdot 617$	308	- 040	23	-6.94	3688
746	$6 \cdot 6$	${ }^{2}$ Libre	$1418 \quad 2 \cdot 682$	+ 009	+ $3 \cdot 2221$	+ ${ }^{01} 33$	- $0010{ }^{\circ}$	-11 $15 \begin{array}{llll} & 27 & \end{array}$	+ 5^{8}	-16.583	+ $\cdot 273$	- $\cdot 064$	18: 19	$9^{* 17}: 9^{\prime 11}$	3691
747	7×5	Lacaille 5921	18 30.562	+.033	3.7128	-0373	-.0036	$\begin{array}{llll}-40 & 18 & 2.94\end{array}$	$+\cdot 3^{8}$	16.538	$\cdot 314$	-.042	16	9 -	3693
748	$5 \cdot 5$	Lacaille 5929	196.158	+ 039	3.4119	-0214	$-.0055$	-24 21 9.09	$+.22$	16.497	- 290	-.031	18	$7 \cdot 12$	3695
749	4.7	Lupi................ τ^{1}	1942.960	+.008	3.8305	-0440	--0009	-44 $46 \begin{array}{lll}6 & 56\end{array}$	+ 25	$16 \cdot 465$	-327	-. 029	17	$8 \cdot 57$	3699
750	4.4	Lupi................ τ^{2}	1944.843	-.002	$3: 8361$	- 0442	+.0003	-44 $55 \quad 37 \cdot 75$	+ $\cdot 16$	16.454	$\cdot 327$	-. 020	20: 21	$7 \cdot 86: 8.06$	3700

701. 4.4, 4.7 $\quad 0^{\prime \prime} \cdot 3 \quad 105^{\circ} \quad 1897.2$.
702. L, $55^{-6.5}$; P, probably irregular.

No.	Mag.	Na	Mean R.A. $1900^{\circ} 0$.	$\mu_{\alpha} \Delta \mathrm{E}$.	Annual Variation I900 o.	Sec. Var. $1900^{\circ} 0$	Proper Motion	Mean Dec. $1900^{\circ} 0$.	$\mu_{\delta} \Delta \mathrm{E}$.	Annual Variation 1900.0.	Sec. Var. $1900^{\circ} 0$.	$\begin{aligned} & \text { Proper } \\ & \text { Motion. } \end{aligned}$	No. of Obs.	Epoch 1900+.	Boss
	2.			.		18									
802	5	Lacail	$1 \begin{array}{r}1222.854 \\ \\ 1\end{array}$	+-016	3.9230 3	+ 0344	-.0022		27 .23	-13.468 13.421	$\begin{array}{r}354 \\ 431 \\ \hline\end{array}$.030	$\begin{aligned} & 35: 39 \\ & 22: 24 \end{aligned}$	$\begin{aligned} & 9 \cdot 02: 9 \cdot 9 \\ & 7^{\circ} 29: 7 \cdot 16 \end{aligned}$	$\begin{aligned} & 3890 \\ & 3892 \end{aligned}$
803	3.4	Lupi.	$1448 \cdot 396$	+-004	3.9228	-340	-.0006	-40 $17 \begin{array}{ll}7 & 7 \\ 7\end{array}$	+ 23	$13 \cdot 263$	435	-32	25: 26	7'04:7.06	3896
804	$7 \cdot 2$	Lacaille 632	15 53.514	+ -015	$4 \cdot 3323$	525	.020	-51 $2237 \cdot 53$	+ 17	$13 \cdot 182$	-482	023	22:23	: 7×45	906
805	4	Lupi............... ϕ^{2}	1645.920	+ -014	190	-0294		-362959.91	$\cdot 23$	$13 \cdot 132$	-427	- ${ }^{0} \mathrm{ozr}$	18:19	$7 \times 55: 7 \cdot 5$	39
806	6.	30 Libr	$1517{ }^{17}$ 27052	+ -001	$+3.3398$	+ -0142	-.0001	-14 $4637^{\prime} 71$	- 01	-13.055	+ 375	+ ${ }^{\circ} \mathrm{OOI}$: 32	$974: 9.68$	3913
807	$5 \cdot 8$	Octantis	$2012 \cdot 91$	$-\mathrm{I} \cdot \mathrm{O}_{4}$	${ }_{13}{ }^{1} 33^{\prime}$	1-404	+-089	$\begin{array}{llllllllllll}-84 & 7 & 53\end{array}$		$12 \cdot 792$	I. 483	+ ${ }^{\text {osi }}$	$41: 143$	11•68: $8 \cdot 95$	3924
808	$5{ }^{\prime} 7$	Apodis............... ${ }^{2}$	$2036 \cdot 583$	+ $\cdot 002$	$6 \cdot 4371$	2073	0003	-73 $2333 \cdot 58$	+ 18	12.868	726	-023	19:20	$7 \cdot 93: 7.86$	3925
809	$5 \cdot 5$	9 Serpentis..... τ^{1}	219.060	+ -012	.7804	040	-0014	+154646.07	+ $\cdot 22$	$12 \cdot 835$	317	- 026	17 :	$8.50: 8.46$	3931
810	$6 \cdot 0$	32 Libra	2236.929	- -оio	3.3770	$\bigcirc{ }^{-18}$	+-0011	-16 22.4 .90	+ 3^{8}	$12 \cdot 753$	- 386	-.043	20 :	$8 \cdot 95: 8 \cdot 92$	3935
811	3.7	3 Coronæ Borealis... β	$152342 \cdot 232$	+ - 094	+ $2 \cdot 4732$	+ -0019	13	+29 27 1•94	- 54	-12.560	+ 288	+ ${ }^{\circ} \mathrm{O} 6$	$26: 27$	708:7*05	3940
812	4.2	Trianguli Anst. $¢$	2733.946	- 025	$5 \cdot 4355$	-1126	+.0034	-65 58 50.64	+ 5^{2}	12.444	. 629	-72	24:25	$7 \cdot 25: 7 \cdot 19$	3947
8_{13+}	2.8	Lupi.............m. $\boldsymbol{\gamma}$	$2828 \cdot 506$	+ - ${ }^{\text {coio }}$	824	330	14	-40 49 50.07	+ 26	$12 \cdot 345$	63	- ${ }^{\circ} 3^{6}$	18	7.30	3950
814	4.3	4 Córone Borealis,...t	28 53.770	+ -016	2.4180	20	20	+31 4147×40	+ 21	$12 \cdot 306$	284	26	17	$8 \cdot 11$	3953
815	$4^{1 / 1}$	3^{8} Libre............... γ	2955.896	-037	501	-136	45		+ - 1	12.210	-393	- 001	38:35	8.24: 8.07	3959
816	$2 \cdot 2$	5 Coronæ Borealis...a	153027.259	- ${ }^{-071}$	$+2.5391$	+ .0024	+.0090	+27	+ 81	-1	+ 300	- '102	18	$7 \cdot 94$	${ }^{61}$
817	$3 \cdot 7$	Scorpii	$3057 \cdot 109$	+ -005	3.6325	-0209	07	-27 4814.04	+ 04	143	- 427	-05	17	7	3962
818	$4 \cdot 3$	pi.	3118.743	+ 117	4.	341	144	-42 $1420 \cdot 31$	50	12.051	-471	+-06	16	$8 \cdot 15$	3964
819	5.5	cail	3123.435	+.032	4.4342	-0513	-.0036	$-52 \begin{array}{llll}-5 & 3 & 3 & 13\end{array}$	+ 37	12. 149	- 520	-42	17	8.90	3965
820	$6 \cdot 3$	Lacaill	3522.911	+ -	$4 \cdot 3183$	445	-.0027	10 $3 \cdot 51$	- 24	$1{ }^{1}$	513	-033	31:32	7.21:717	3987
82	5.1	43 Libre	153610.983	+-027	$+3.4492$	+ -0157		-19	+ 99	-11.889	+ 412	- $\cdot 119$	19	30	3990
822	4.6	21 Serpentis	37 5. 455	+ 042	2.6725	-0036	51	+19 $5931 \cdot 82$	+ 45	11.761	-321	- $\cdot 05$	20	8.26	3994
$823 \dagger$	3.8	8 Coronæ Borealis $m . \gamma$	38 32.506	+-057	$2 \cdot 5188$	026	-075	+26 3644.82	- 23	2	$\cdot 303$	+.030	22	$7 \cdot 57$	3998
824	$2 \cdot 7$	24 Serpentis............ α	39 20•582	- - 075	$2 \cdot 9522$. 0061	+-0090	+ 64424.56	- -3I	11.508	- 358	+ -038	23:22	8.36:8.28	4001
825	$3 \cdot 5$	28 Serpentis............ β	4134.347	- 040	$2 \cdot 7673$	-0043	+-0049	+15 444 18	+ ${ }^{46}$	11.442	33	--057	22	.11	4009
826	4.2	35 Serpentis κ	154414.238	+.025	+ 2.6992	+ 0039	-.0032	+1827 0.30	+ 77	-1	-33	- ${ }^{101}$	20	7.91:7.66	401
827	3.4	32 Serpentis............ μ	4423.988	+ 055	,	-0088	--0059	- 3 727•96	+ 26	11-209	$\cdot 382$	- $\cdot 028$	26	9.25:9.28	401
828*	4^{17}	5 Lupi................ χ	$4436 \cdot 142$	+-006	$3 \cdot 80$	237	--0007	-331921.66	+ 24	II 194	- 465	028	18	8.63	4018
829	3.7	37 Serpentis............t	$4549 \cdot 887$	- -068	$2 \cdot 9875$	-0065	+-0083	+ $44643 \cdot 25$	- 48	11	$\cdot 369$	+ 057	$20:$	$8 \cdot 20: 8.49$	4026
830	2.8	Trianguli $\Delta u s t$. . . . β	$46 \quad 19.468$	+ 215	$5 \cdot 2436$	-0872	-. 0296	$\begin{array}{llll}-63 & 721 \cdot 80\end{array}$	+ 2.79	11.42	. 63	-. 388	$22: 23$	7-26:719	4030
831	5	45 Libre..	$154731^{1} 656$	+ -008	+ 3.4758	+ -0151		-19 $5^{2} \quad 5 \cdot 75$	+ 28	-10.987	+ ${ }^{429}$	-034	23	8.30	3.3
832	$4^{\circ} \mathrm{O}$	5 Scorpii.............. ρ	$5042 \cdot 498$	+-007	3.6954	-0199	-010	-28 5519	+ 22	$10 \cdot 749$	-460	- -030	32:33	$743: 7 \cdot 38$	4052
833	$3 \cdot 8$	41 Serpentis........... γ	$5^{1} 50 \cdot 176$	- 178	$2 \cdot 7688$	-057	+.0210	+1559 5.48	+10 79	II•933	-349	$-1 \cdot 297$	27	$8 \cdot 46: 8 \cdot 32$	4055
834	$2 \cdot 9$	6 Scorpii π	$5248 \cdot 045$	+-009	3.6210	178	--0011	-25 49 34*66	+ 30	10.600	- 453	-.036		8.23	4062
835^{+}	$4 \cdot 2$	I3 Coronæ Bor....seq. ϵ	5326.745	+ 0.048	2.4820	0031	064	+27 10 2.14	+ 50	10. 584	312	-068	$24:$	$7 \cdot 43: 7 \cdot 35$	4063
836	$2 \cdot 3$	7 Scorpii δ	$155425 \cdot 134$	+-007	+ 3.5402	+-0158	009	-22 2014.07	+ 30	-10.482	+ ${ }^{445}$	039	$31: 26$	$8 \cdot 31: 7 \times 67$	4066
837	$5 \cdot 7$	49 Libre.	$5442 \cdot 433$	+ 356	$3 \cdot 3609$	- 0133	40	$-1614 \quad 23.29$	$+3.23$	10.821	,	400		8.08	4067
838	$5 \cdot 4$	5 Herculis............r	$5644 \cdot 643$	+.030	$2 \cdot 6936$	-0038	-037	+18 541.60	- I•19	. 125	341	+ ${ }^{144}$	24	$8 \cdot 23$	4075
839	$4 \cdot 8$	Normæ.............. δ	$5925 \cdot 323$	-001	$4^{\cdot 2242}$	-033r	-0ar	-44 $54 \quad 6 \cdot 25$		$10 \cdot 050$	-537	+-017	28:29	$735: 7 \times 45$	4084
$840+$	$2 \cdot 6$	8 Scorpii..........pr. β	$155937 \cdot 267$	+-007	3.4817	-141	- 0008	-19 $3155^{\circ} \mathrm{OI}$	+ 25	10.081		-.029	$35: 32$	$8 \cdot 84: 8.52$	4086
841	4.4	Lupi θ	16 - 1.454	+-013	+ ${ }^{\text {3 }}$.928 1	+ .0244	017	-36 $3^{11} 48.41$	-27	-10.057	+ 500	035	18 :	7.89: $7 \cdot 84$	409
842	$4 \cdot 5$	10 Scorpii ${ }^{2}$	1 $32 \cdot 375$	- ${ }^{-23}$	3.5120	- 0145	+.0030	-20 $3555^{\circ} 3^{1}$	+ 43	$9 \cdot 963$	450	-. 056	30:31	7'59:7*61	4095
843	$5^{1} 1$	7 Herculisк	$333 \cdot 655$	+ 025	$2 \cdot 7053$	-0041	--0031	+17 1847.40	- Ir	$9 \cdot 768$	348	- -014	22:23	8.13: $8 \cdot 17$	4101
844	6.2	Lacaille 6715	428.516	+ - 074	4.0744	- 0278	100	-40 5117 7 1	+ 95	9.811	523	- 129	29:30	$7{ }^{\circ} 44: 7 \times 39$	410
845	4	Apodis δ^{1}	$523 \cdot 566$	+ -056	8.8018	3371	a62	-78 $26 \begin{array}{lll}38 & 10\end{array}$	+ 34	9.650	1•129	-.037	33	9.06	410
846	$5{ }^{\circ} 2$	Normæ	16535.351	+ ${ }^{-13}$	+ 4.7080	+ -0479	016	-54 $22 \begin{array}{ll}18 \cdot 18\end{array}$		-9.640	+ ${ }^{6} 06$	- -043	$21: 22$	8.19:8.13	4111
847	$4 \cdot 8$	13 Scorpiic1	68.510	+ 018	-3.6862	-0175	-0021	-27 40 I-19	+ 33	$9 \cdot 593$	$\cdot 476$	--038	17	$8 \cdot 70$	4115
848	4.1	Trianguli Aust..... δ	619.976	- -003	$5 \cdot 4231$	-0783	- 0004	-63 $2548 \cdot 36$	+ 14	9.558	700	- -or8	18	$7 \cdot 56$	4118
849	$2 \cdot 7$) Ophiuchi δ	$96 \cdot 240$	+.026	$3 \cdot 1401$	-0082	-0033	- 32614.29	+1.17	9.479	409	-153	$41: 43$	7*91:7*65	4134
$850+$	5*7	Normæ.........m. λ	1219.984	+ 007	4.1607	-0278	-0033	-42 $2544 \cdot 65$	+ 14 $+\quad 14$	9.094	544	--019	24:26	$7 \cdot 26: 7 \cdot 15$	4144

$\begin{array}{llll}813 . & 3^{\prime}, 5, & 3.7 & 0^{\prime \prime \prime} .5\end{array} 9^{96^{\circ}} \quad 1901{ }^{\circ} \mathrm{O}$.
822. $5.4,5.4 \quad \mathrm{o}^{\prime \prime \prime} \cdot 3 \quad \frac{97^{\circ}}{} \quad 1901{ }^{\circ} \mathrm{O}$.
823. $3^{\circ} 9,6.9$; very close binary.
828. λ in Auwers' Bradley.
835. 4.2, 12
840. $2 \cdot 6,10$
$850.6 \cdot 1,6 \cdot 9$
 352°
95°
$1905^{\circ} 4$.
190 F .4.
1897.

No.	Mag.	Name.	Mean R.A. $1900^{\circ} 0$.	$\mu_{\alpha} \Delta \mathrm{E}$.	Annual Variation 1900 0.	Sec. Var. 1900\%.	Proper Motion.	Mean Dec. $1900^{\circ} 0$.	$\mu_{\delta} \Delta \mathrm{E}$.	Annual Variation 1900°.	Sec. Var. $1900^{\circ} 0$.	Proper Motion.	No. of Obs.	Epoch $1900+$.	$\begin{aligned} & \text { Bors } \\ & \text { No. } \end{aligned}$
			h m ${ }^{\text {m }}$	$1 \cdot 16$											
851	$4^{\text { }}$ I	Norma............. γ^{2}	161221.211	-146	$+4.4701$	$+.0373$	-0180	-49 $5437 \cdot 25$	+. 43	-9.126	$+\cdot 583$	-.053	21:22	8•10: 8 .02	4145
852	3"I	2 Ophiuchi	$13 \quad 1.807$	-045	3.1705	-008I	+.0053	$42655^{\prime 7}$	- 27	$8 \cdot 989$	417	+.032	23	$8 \cdot 48: 8 \cdot 29$	$4^{15} 47$
853	7.0	Lacaille $6783 \ldots$	$14 \quad 5 \cdot 569$	+.007	4.3976	-0341	- $\cdot 0009$	-47 $56 \begin{aligned} & 52 \cdot 22\end{aligned}$	+ 28	$8 \cdot 972$	578	-.034	17:19	8.22:8.16	4153
854	$5 \cdot 6$	Lacaille 6790.	1459.520	+.008	$4 \cdot 4664$	-035 ${ }^{8}$	- 0011	$\begin{array}{llll}-49 & 20 & 0.65\end{array}$	+ ${ }^{+}$	$8 \cdot 898$	588	-.031	21:24	$7 \cdot 53: 7 \cdot 41$	4156
855	$3^{\circ} 0$	20 Scorpii σ	$15 \quad 6.517$	+.007	3.6395	- 0154	- 0009	-25 2110.57	+ 24	8-890	480	. 032	25	$7 \cdot 65$	4158
856	4*9	50 Serpentis.......... σ	$\begin{array}{llll}16 & 17 & 0.356\end{array}$	+-089	$+3.0347$	+ .0066	0111	+11550.34	- 35	-8.666	+ 401	+.043	16	$8 \cdot 05$	4163
857	$5 \cdot 5$	Lacaille 68ı	$17 \quad 14.874$	-.054	4.0534	-0237	+.0072	$-3857 \quad 32 \cdot 83$	+ 14	8.709	537	-.019	22: 23	7•52:7*39	4164
858	$3 \cdot 7$	20 Herculis γ	17 30.466	+.030	$2 \cdot 6449$	-0038	-.0034	+19 2316.33	- 34	$8 \cdot 630$	351	+ .039	23:24	8.86: $8 \cdot 74$	4165
859	$5^{1} 1$	Trianguli Aust..... ζ	$17{ }^{17}{ }^{2} \cdot 841$	- 330	$6 \cdot 3990$	-1158	+.0397	$-695131 \cdot 13$	- $\cdot 83$	8. 553	-851	+ 100	18	8.31	4166
860	$3 \cdot 8$	Apodis............. γ	$18 \quad 5 \cdot 732$	+.336	9.0554	3205	- 0400	$-784021 \cdot 55$	+ 64	$8 \cdot 699$	1.190	- . 077	34:35	8.40: $8 \cdot 34$	4168
861	4.9	19 Coronæ Borealis ... ξ	1618 II•939	+.069	$+2.3363$	+ 0030	-*0074	+31 $727 \cdot 29$	- $\cdot 85$	-8.522	+ 310	+-092	17	$9^{*} 27$	4169
862	$6 \cdot 5$	23 Herculis	196.128	- 010	$2 \cdot 3012$	-0032	+.0010	+32 $3358 \cdot 14$	+ 17	8.561	-307	- -018	16	$9 \cdot 56$	4176
$863{ }^{\text {¢ }}$	4.6	24 Herculisseq. ω	$2048 \cdot 033$	- $\cdot 022$	2.7669	-0045	+.0030	+14 1547.59	+ $\cdot 47$	$8 \cdot 474$	-370	- -065	23: 24	7 $30: 7 \cdot 26$	4182
864	5.4	Lacaille 6824	2155.992	+.010	5.3024	-0616	-.0013	-6ı $2443 \cdot 28$	+ 02	$8 \cdot 322$	707	- .003	19:20	$7 \cdot 84: 7 \cdot 75$	4185
865	$5 \cdot 6$	Lacaille 6841	$22 \quad 27.479$	+ - ${ }^{\text {c }} 3$	4.3323	-0295	- '0015	$\begin{array}{lllllllllll}-46 & 1 & 16 \cdot 54\end{array}$	+ 08	8.287	-578	- 010	19	8.40	4190
866	6.6	Lacaille 6441	$16 \quad 2250 \cdot 86$		+29.826	$+4.962$		$\begin{array}{llll}-87 & 23 & 34 \cdot 64\end{array}$		-8.246	$+3.967$		31:42	11-52:10.31	
$867+$	0.8	21 Scorpii..........seq. a	2316.486	+ 004	3.6720	- 0149	-.0005	-26 1236.74	+ 28	8.245	492	- .033	20	8.34	4193
868	6.3	Lacaille 6545	23 34.91	- .08	$21 \cdot 343$	2.353	+.007	-86 10 $42 \cdot 85$	+ ${ }^{\text {- }}$ -	8-189	$2 \cdot 845$	-.001	47: 157	11-51: 8.68	4196
869	$4{ }^{\circ} 4$	Scorpii............. N	24 50.787	+.006	3.9117	-0192	-.0007	-34 29 11.63	+ 20	8.110	525	-.024	16	$8 \cdot 46$	4200
$870+$	$4^{\circ} \mathrm{O}$	10 Ophiuchim. λ	25 52.151	+.028	3.0220	- 0063	-.0032	+2128.97	+ 74	8.088	-407	-.084	18:17	$8 \cdot 83$	4203
871	2.6	27 Herculis β	$162555 \cdot 160$	+.071	$+2.5770$	+ .0036	-.0075	+214226.29	+ $\cdot 23$	-8.024	+ 347	-. 024	17: 16	$9 \cdot 50: 9.45$	4204
872	$5 \cdot 2$	Normx............. μ	2658.550	- $\cdot 009$	$4 \cdot 2523$	-0261	+.001 1	-43 $4959 \cdot 96$	+ .08	$7 \cdot 924$	573	- •009	17	8.46	4208
873	$4 \cdot 2$	Apodis............. β	$2846 \cdot 616$	+.710	8.4547	- 2440	- 0880	-77 18 31•67	+2.80	8.115	1.128	- . 346	40:41	$8 \cdot 07: 8 \cdot 10$	4215
874	$2 \cdot 8$	23 Scorpii τ	2939.347	+.007	3'7279	-0150	-.0008	-28 0 31.18	+ 30	$7 \cdot 736$	- 505	- .037	19: 21	8.30:8.22	4218
875	2.5	I3 Ophiuchi 5	3139.098	- .006	3. 2996	- 0086	$+\cdot 0008$	-10 2152.70	-13	7.521	-449	+.017	22: 21	$7 \cdot 89: 7 \cdot 82$	4225
876	$5 \cdot 2$	24 Scorpii................	16 $3547 \cdot 285$	+.014	$+3.4651$	+ $\cdot 0.03$	- ${ }^{\text {-0017 }}$	-17 $3255{ }^{\prime \prime} 47$	+ .06	-7.208	+ 474	- ${ }^{\circ} \mathrm{O}{ }^{\prime}$	22	8.38	4239
$877+$	2.8	40 Herculism. 5	37 30.644	+. 298	2.2608	-0027	-.0365	+31 475.03	$-3 \cdot 16$	6.675	-306	+ 385	22:20	8.16: 8.22	4246
878	177	Trianguli Aust.....	384.425	-.025	$6 \cdot 3107$	-0889	+.0032	-68 $5038 \cdot 83$	+ 20	$7 \cdot 042$	-865	-. 027	18:20	$7 \cdot 74: 7 \times 56$	4250
879	$7 \cdot 0$	Lacaille 6953.	$3846 \cdot 457$	- 002	$4 \cdot 3863$	-0258	+.0002	-46 $2046 \cdot 63$	+ 33	$6 \cdot 998$	-603	-.041	19:21	8.25:8.08	4252
880	$3 \cdot 7$	ræ.................. η	$41 \quad 8 \cdot 922$. 033	5.1593	-0447	+.0044		+ 33	$6 \cdot 807$	712	- 045	28:30	7•59:7*40	4265
881	7•9*	Gilliss P. Z. $11448 .$.	$164116 \cdot 69$		$+65.525$	+21.427		-88 $5149^{\circ} 91$...	-6.751	+9.134		35:45	11-43: $10 \cdot 58$	
882	$7 \cdot 1$	I8 Ophiuchi..............	43 39.119	+ $\cdot 007$	$3 \cdot 6461$	-0118	-.0009	-24 27 54.21	+ 19	$6 \cdot 578$	- 505	- ${ }^{\circ} 23$	17:18	8.15: 8.13	4271
883	$2 \cdot 1$	26 Scorpii ϵ	43 40.780	+ 374	$3 \cdot 8783$	-0161	-.0496	$\begin{array}{ll}-34 & 644 \cdot 07\end{array}$	+ 1.97	$6 \cdot 811$	530	- $\cdot 258$	24:25	$7 \cdot 55: 7 \cdot 65$	4272
884	$4 \cdot 8$	20. Ophiuchi..............	44 18.102	-.048	$3 \cdot 3149$	-0080	+.0058	-10 $3623 \cdot 34$	+ 85	$6 \cdot 604$	$\cdot 461$	- 102	17	8. 29	4273
885	$3 \cdot 1$	Scorpii μ^{1}	$45 \quad 5 \cdot 721$	+.005	$4 \cdot 0562$	-0177	-.0006	-37 $5232 \cdot 99$	+ 26	$6 \cdot 466$	563	- -030	19:20	$8 \cdot 87: 8 \cdot 68$	4277
886	5%	47 Hercuis..............	$164528 \cdot 032$	- 032	+2.9109	+ .0048	+.0035	+725 12.51	+ -07	-6.413	+ 405	-.008	16	$9^{\circ} 26$	4280
887	$6 \cdot 7$	49 Herculis..	47 31.660	- $\cdot 005$	2.7292	-0039	+.0006	+15 $8 \quad 30 \cdot 85$	+ .06	6.241	-381	- $\cdot 007$	44:39	8.49: $8 \cdot 14$	4291
888	3.5	Scorpii............. 5^{2}	$4732 \cdot 632$	+.089	4.2128	-204	-.0109	-42 1125.77	+ 1.93	6.470	585	- . 237	14: 15	$8 \cdot 18: 8 \cdot 13$	4292
889	$6 \cdot 8$	Lacaille 7024.........	4825.946	+.018	4.6140	- 274	- 0019	-50 $3044 \cdot 78$	+ 23	$6 \cdot 184$	-642	-.025	16: 18	9'49: $9^{\prime} 29$	4296
890	$5 \cdot 6$	53 Herculis.	$49 \quad 10.378$	+ 07 I	$2 \cdot 2734$	'0033	-.0075	+31 52 1.18	+ 22	6.120	$\cdot 317$	- $\cdot 023$	16	$9 \cdot 45$	4300
891	$4 * 3$	25 Ophiuchi............ 4	I6 49 16.505	+.034	+2.8365	+ .0044	-.0038	+10 19 47-17	+ 41	-6.134	+ 396	-.046	16:17	$8.90: 8.86$	4302
892	$3 \cdot 0$	Aræ.................. ζ	$5020 \cdot 560$	+.021	4.9483	-0342	- 0027	-55 49 55.90	+ 32	$6 \cdot 041$	-690	- .041	22: 23	$7 \cdot 93: 7 \cdot 84$	4304
$893+$	$5 \cdot 7$	24 Ophiuchim...	$5046 \cdot 086$	+.004	3.6132	- 0104	-.0005	-22 5929.74	+ 03	5.968	- 505	- $\cdot 004$	19:21	8.49:8.22	4309
894	$4^{\cdot 1}$	Aræ................ ϵ^{1}	$5136 \cdot 712$	+.004	4.7675	-0293	- 0004	-53 - 23.26	- -01	$5 \cdot 893$	-667	+ 001	19	8.81	4313
895	3.2	27 Ophiuchik	$5255 \cdot 908$	+ 156	$2 \cdot 8376$	-0043	-•0199	+ 93149^{12}	$+10$	5'797	- 396	-. 014	26:29	$7 \cdot 85: 7 \cdot 45$	4315
	$5 \cdot 3$	Lacaille	165524.570	+.007	$+3.8734$	+ -0130	--0009		+ 47	-5.637		-.062	23:25		4321
897	$5 \cdot 1$	30 Ophinchi.	$5547 \cdot 132$	+.031	3.1602	-0060	-.0036	- 4 4 22.62	+ 76	$5 \cdot 632$	- 444	-.088	21	$8 \cdot 60$	4323
898	3.8	58 Herculis.............t	$\begin{array}{r}56 \quad 27 \cdot 730 \\ \hline 750\end{array}$	+.031	2.2941	-003I	--0036	+31 424.74	- 18	$5 \cdot 466$	-323	+.021	17:20	$8 \cdot 56: 8 \cdot 36$	4328
899	$5 \cdot 4$	59 Herculis............. ${ }^{\text {d }}$	$1657 \quad 54 \cdot 828$	-000	2.2131	-0032	-0000	+33 $424^{6 \cdot 61}$	+ 10	5*376	$\cdot 313$	- O 2	19	$8 \cdot 42$	4332
900	$4 \cdot 9$	60 Herculi	$17 \quad 044^{\circ} 464$	- .027	2.7805	-0038	+.0036	+12 $5240 \cdot 77$	$+13$	5'143	-394	- $\cdot 017$	30:31	7*58:7*50	4346
					863. 867. 870. 877. 893.	$\begin{aligned} & 4 \cdot 6,12 \\ & 0 \cdot 8,7 \cdot 1 \\ & 4 \cdot 2,6 \cdot 3 ; c \\ & 2 \cdot 9,6 \cdot 3 ; \\ & 6 \cdot 4,6 \cdot 6 \end{aligned}$	$\begin{gathered} 2^{\prime \prime \prime} \cdot 0 \\ 3^{\prime \prime \prime} \cdot 2 \end{gathered}$ lose binary lose binary $0^{1 \prime} 6$	182° 1901.5. 274° 1903.4. y. 276° 1904.5.							

No．	Mag．	Name．	Mcan R．A． 1900° ．	$\mu_{\alpha} \Delta \mathrm{E}$ ．	Annual Variation 1900 ${ }^{\circ}$ ．	Sec． Var． 1900ㅇ．	Proper Motion	Mean Dec． $1900^{\circ} 0$.	$\mu_{\delta} \Delta \mathrm{E}$ ．	$\begin{gathered} \text { Annual } \\ \text { Variation } \\ 1900 \% \end{gathered}$	Sec． Var． 1900\％．	Proper Motion．	No. of Obs.	$\begin{aligned} & \text { Epoch } \\ & \text { 1900+. } \end{aligned}$	$\begin{aligned} & \text { Boss } \\ & \text { No. } \end{aligned}$
951	4.4	Pavouis．		＇024	775	$+\cdots \cdot 028$	－0024	－63 4ó $22^{\prime \prime} \cdot 32$	＋i＇．90	－0＂＇283	842	1			
952	$2 \cdot 8$	10 Sagittari	1759		＋ 3.8526	－028	－． 0046			矿			16： 1	93	568
953	3.7	72 Ophiuch	$18 \quad 2 \begin{array}{ll}16 & 493\end{array}$	＋${ }^{\text {－}}$－33	8433	18	－004	＋ $93^{2} 5^{8 \cdot 66}$		＋0．310	414	＋．082	17 ：	$8.73: 8.65$	45^{81}
954	$3 \cdot 8$	103 Herculis．	475	02	2．3395	＇00\％1	＋－000	＋28 $4455 \cdot 13$	－ 02	$0 \cdot 320$	－341	＋．002	16： 18	44：9＇42	4584
955	$4 \cdot 7$	Telesc	402	$+\cdot 14$	$4 \cdot 4531$	－0002	－．0016	－45 58 8 $18 \cdot 36$	＋ 3^{2}	$0 \cdot 296$	－649	037	16	$8 \cdot 60$	4588
956	4.4	102 Herct	184		＋2	－0020	－．0001	＋20 $4754 \cdot 64$	＋ 16	＋0．375	＋	－ 017	16	．51	90
957	4.0	13 Sagittarii	985	－－003	$3 \cdot 5876$	＋．0007	．003	－21 $\quad 5 \quad 6.47$	＋ 05	0.676		－－005	29	9．15：9．00	4604
958	$5 \cdot 5$	Lacail	616	－．048	4．3782	－0012	＋－0055	－44 14 II 62	－ 17	770	638	＋－019	18：19	$8 \cdot 69$	4610
959	$5^{6} 6$	acaill	$842^{\circ} 088$	＋${ }^{\text {a }}$－	$5 \cdot 0817$		047	$\begin{array}{lllll}-56 & 3 & 15.95\end{array}$	＋ 25	$0 \cdot 735$	$\cdot 735$	－026	16	9．52	4611
96	8．1	Brisba	1021.65	＋	23.530			－		906	3.426		29：37	－39：10958	
	3.0	，	181051.583	＋ 095	＋4．0592	06	5	－3647 31．44	＋1•37	＋0．783	＋ 589	－$\cdot 167$	20： 22	30：8．21	4617
$962+$	$4 \cdot 3$	Pavonis．．．．．．．．．pr．ξ	$14 \quad 0.661$	＋－008	$5 \cdot 5322$	－0088	－－0010	－61 $3221 \cdot 21$	－ 07	$1 \cdot 233$	． 804	＋$\cdot 008$	18： 19	8．41： $8 \cdot 32$	4625
963	$2 \cdot 7$	ig Sagittarii ．．．．．．．．．δ	1435.569	－026	8412	－0009	028	－29 5214.41	＋ 34	1.240	55	－－036	17	$9 \cdot 40$	4628
964	$3 \cdot 3$	58 Serpentis ．．．．．．．．．．．η	$16 \quad 7.789$	＋ 343	1029	＋．0017	－． 0376	－2 5536.24	＋6．32	0.711	$\cdot 445$	－ 699	$23: 2$	9•12：9．04	4638
965	I＇7	20 Sagittarii ．．．．．．．．．．．．$¢$	$1732 \cdot 106$	＋ 030	23	－0018	0035	－34 $2555{ }^{\prime} 7^{6}$	＋ $1 \cdot 11$	1．400	－578	－${ }^{132}$	17：18	8．50：8．39	4645
966	5＊9	Bradley 2308．．．．．．．．．	I8 1758.464	－ 0 －10	＋ $2 \cdot 5015$	＋ 0016	＋${ }^{\circ} \mathrm{oj1}$	＋2314 4.40	71	＋ 1.646	＋$\cdot 36$	＋－ 075	16	$9 \cdot 42$	4649
967	$5 \cdot 4$	B．D．$+17^{\circ} 3555 \ldots$	1823.920	43	2．6497	－0015	＋．0045	＋1746 33.92	－ 07	1.615	$\cdot 385$	＋ 007	16	$9 \cdot 60$	$5{ }^{1}$
968	$4^{\circ} \mathrm{O}$	109 Her	1926.310	－ 129	$2 \cdot 5556$	－0021	＋－0138	＋21 $4323^{\circ} 4^{2}$	＋ 2.47	1×437	372	－$\cdot 261$	22：23	34：9	4656
969	$3 \cdot 6$	Telescop	1933.549	＋$\cdot 009$	4.4514	47	0010	$\begin{array}{llll}-46 & 1 & 24 & 77\end{array}$	＋ 46	1．657	－646	$\cdot 052$	17： 18	$8 \cdot 75$	4657
970	$6 \cdot 0$	Lacaill	$20 \quad 4.988$	－${ }^{\text {a }} 3$	7250	－359		$\begin{array}{llll}-74 & 1 & 38.98\end{array}$	＋I－11	1．634	1．121	－ 120	16：17	$9 \cdot 37: 9$	4658
971	$4 \cdot 2$		$1821 \quad 7 \cdot 840$	35	＋ 4.6247	．0056		－49	$+2.36$	＋ 1.589	．${ }$	－${ }^{2} 57$	16	919	62
972	$2 \cdot 7$	22 Sagittari	2147.939	＋－ 03	702	2	0035	－25 2839.03	＋1．84	1．713	536	191	22： 23	51：964	4665
973	$4 \cdot 7$	Scuti 2 H	890	－－002	3.4196	－0006	＋ 0002	－14	＋ 07	44	95	－008	17	$8 \cdot 65$	4674
974	$8 \cdot 3$	Lacaille			20.601	－ 517		－85		$2 \cdot 093$	986		30：38	$11433: 10 \% 72$	
975	$5 \cdot 6$	60 Serpentis	2428.760	$\cdot 014$	214	＋ 0004	0015	－2 $2 \quad 30.76$	＋ 28	2． 106	45	$\cdot 031$	16	$9 \cdot 00$	4678
976	$4 \cdot 6$	rour	182	－ 029	＋ 4	057	＋．0035	－42 $23 \begin{array}{lll}4 \cdot 14\end{array}$		＋ $2 \cdot 274$	＋ 620	－ 027	21	41	9
977	$4^{\circ} 0$	outi 3	$2945 \cdot 922$	＋${ }^{-1}{ }^{2}$	淅	－0001	－－0015	－8	$+2.67$	2．279	$\cdot 471$	－－317	21	42	4705
978	4.	vonis	31	＋${ }^{021}$	30	－0429	－－0022	－71	＋1．48	$2 \cdot 579$	I．	－${ }^{155}$	16	9.53	4709
979	$6 \cdot 1$	cail	314	－012	$4 \cdot 5436$	－0095	$+\cdot 0013$	－47 $5945^{\circ} 43$		$2 \cdot 785$	－655	＋－ 024	17	$9 \cdot 21$	4710
950	5.9	ade	3225		$3 \cdot 6495$	－0027	0006	－23 $3525^{\circ} 11$		$2 \cdot 798$	－52	02	16	${ }^{11}$	4718
981	$6 \cdot 1$	adley	I8 3255.595	＋－ 053	$+3.578 \mathrm{I}$	－$\cdot 0022$		－21	＋ 1.48	＋2．717	＋${ }^{514}$	－${ }^{154}$	16：17	$9 \cdot 63$	4720
982	$4 \cdot 8$	uti 4	$3647 \cdot 936$	＋ 0	$3 \cdot 2856$	（0）2		－ $98853 \cdot 87$	＋ 04	3.201		－－004	22	－19：9	4731
983	5°	Corove	$3655 \cdot 383$	－003	－1190	006	－000	$-3825 \quad 10.94$	＋ 5^{2}	． 157	591	－－059	16	$8 \cdot 73$	4732
984	${ }^{3} 2$	${ }^{2}$ Sagit	3924.599	－－033	7496	－0044	－03	$\begin{array}{llll}-27 & 5 & 36 \cdot 98\end{array}$	$+\quad 03$ $+\quad .08$	$3 \cdot 427$	－538	－．003	$22: 2$	9．11：90．	4739
985	4.3	Ifo H	4121.451	+ －${ }^{1} 4$	5806	－ 00	15	＋20 2658.67	$+3.28$	$3 \cdot 254$		$\cdot 34$	17	$\cdot 54$	4753
986	57	Coronx Aust．．．．．．．η^{1}	$184137 \cdot 532$	－024	$+4.335^{\circ}$	－ 0104	026	－43	＋ 15	$+3.605$	$\cdot 6$	016	16	． 18	4755
98	4	Sut	$4152 \cdot 122$	$+\cdot 007$	$3 \cdot 1833$	－0010	．0007	－4 $41 \begin{aligned} & 158 \cdot 13\end{aligned}$		$3 \cdot 619$	455	－－023	16	9.55	4756
958	$4 \cdot 3$	1 II Herculis．	$4236 \cdot 322$	－． 042	$2 \cdot 6482$	－0008	044	＋18 $413 \cdot 17$	－1．01	$3 \cdot 8 \mathrm{II}$	378	＋${ }^{106}$	16	$9 \cdot 55$	4761
989	$4 \cdot 3$	Pavonis．．．．	4257.141	＋ 022	5713	－0294	23	－62 18 7 $7 \cdot 38$	＋ 11	$3 \cdot 724$	796	－－011	16	$9^{\prime} 76$	4762
990	$6 \cdot 5$	30 Sagit	$4449^{\cdot 818}$	＋${ }^{\circ} 23$	$3 \cdot 6067$	－0040	027	－22 $1636 \cdot 38$	＋ 21	$3 \cdot 872$	5	－． 024	17：16	$8.66: 8.6$	4767
991	6.	Lacaille	$1845 \quad 7956$	＋${ }^{\circ} \mathrm{O} \mathrm{I}_{4}$	＋4．2437	－0103	． 0015	－41		$+3.899$	＋ 605	023	16	$9 \cdot 43$	4769
992	var．	10 Lyræ．．．．．．．．．．．．pr．β	$4623 \cdot 24^{2}$	－003	2．2144	－0014	－0003	＋3314 47＊34	＋ 07	$4 \cdot 023$	35	－007	16	$9 \cdot 86$	4776
993	2.	34 Sagittarii	$49 \quad 3.933$	－005	$3 \cdot 7218$	－0055	0006	－26 2515.86	＋ 57	4－193	528	066	19	8.70	4784
99	5°	Tolescoprii．．．．．．．．．．入	$5027 \cdot 855$	－o19	4•8094	． 0202	aczo	－53	－ 13	$4 \cdot 393$	683	＋$\cdot 014$	17	9.57	4796
99	$4 \cdot 8$	63 Serpentis．．．．．．．2r．θ	5114.946	－－030	$2 \cdot 9826$	－0005	．0031	＋ $4424 \cdot 27$		4.472	－422	＋．027	17：16	$9.52: 94$	4802
996	3.5	37 Sagittarii ．．．．．．．．．．．ξ	185145.905	－ 023	＋ 3.5808	－0046	＋．0023	－21 $1417 \cdot 60$	＋ 18	＋4．471	－507	－ 01	22	－09 ： 10	4809
997	$5^{\circ} \mathrm{I}$	Coronæ Aust．．．．．．．．ϵ	5158.638	＋－095	4．0512	－－0096	－－0109	$-371416 \cdot 81$	＋ 81	$4 \cdot 415$	－572	－093	16	8．73	4810
998	$4^{\prime 2}$	I3 Aquile．	55 5．001	＋ 043	$2 \cdot 7218$	＋－0006	－ 0044	＋14 5555.57	＋ 74	4.695	383	－ 077	20	9．70： $9^{9} 64$	4823
99	$3 \cdot 2$	14 Lyre．．	$5512 \cdot 128$	＋ 002	$2 \cdot 2436$	＋－0013	－ 0002	＋32 $338 \cdot 14$	＋．06	4.775	316	－$\cdot 007$	16	$9 \cdot 09$	4824
rooet	$2 \cdot$	38 Sagitta	${ }_{56} 14.984$	＋ 015	$3 \cdot 8199$	－0078	－．0016	$\left\lvert\,$-30 1 23.29\right.		$4 \cdot 871$	538	－000	16	9.41	4832

[^0]| No. | Mag. | Name. | Mean R.A. $1900^{\circ} 0$. | $\mu_{a} \Delta \mathrm{E}$. | Annual Variation 1900.o. | Sec. Var. $1900{ }^{\circ} \mathrm{O}$. | Proper Motion. | Mean Dec. $1900^{\circ} 0$. | $\mu_{\delta} \Delta \mathrm{E}$. | Annual Variation 1900.0. | Sec. Var. 1900%. | $\begin{aligned} & \text { Proper } \\ & \text { Motion. } \end{aligned}$ | No. of Obs. | Epoch
 1900+. | $\begin{aligned} & \text { Boss } \\ & \text { No. } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1001 | $5 \cdot 3$ | Telescopii...........p | $\begin{array}{cc} \mathrm{h} \\ 18 & \mathrm{~m} \\ 58 & \mathrm{~s} \\ 25^{\circ} 003 \end{array}$ | . 023 | $+4.7597$ | . 0222 | $+0027$ | | +1"02 | + ${ }^{\prime \prime} \times 937$ | +"670 | - " ${ }_{18} 8$ | 17 | $8 \cdot 63$ | 84 |
| 1002 | $5{ }^{\circ} 5$ | Octantis............ σ | $185945{ }^{\circ} 56$ | -1.23 | 102.437 | $38 \cdot 819$ | +'109 | -89 151516.89 | + .08 | $5 \cdot 157$ | 14.445 | -009 | 61:102 | 1131: $9^{.66}$ | 4854 |
| 1003 | $7 \cdot 9$ | Lacaille 775 | $19 \quad 028.72$ | | 17.519 | -915 | | -84 $53347 \cdot 8 \mathrm{I}$ | | $5 \cdot 229$ | $2 \cdot 463$ | ... | 35:43 | ${ }^{11} 3$ 39: $10 \cdot 69$ | |
| 1004 | $3 \cdot 3$ | 40 Sagittarii τ | - 41.819 | + ${ }^{\circ}{ }^{2}$ | $3 \cdot 7484$ | -0072 | 045 | -27 49 2.21 | $+2.45$ | 4.987 | - 525 | - 260 | 17:18 | 9.35:9.44 | 4857 |
| 1005 | $3^{\circ} \mathrm{O}$ | 17 Aqnilx..........pr. δ | - 48.821 | + -006 | 2.7570 | -0004 | O66 | +13 $4251 \cdot 74$ | +1.00 | 5.155 | 386 | - ${ }^{102}$ | 17 | 9.84: $9 \cdot 80$ | 4858 |
| 10 | $3 \cdot 4$ | 16 Aquilæ..............入 | 19 O 56.530 | + 016 | $+3 \cdot 1842$ | -0021 | 017 | - $5 \times 58 \cdot 61$ | + 86 | + $5 \cdot 178$ | + ${ }^{446}$ | - 090 | 18 : 16 | 9.61 : $9 \cdot 57$ | 4859 |
| 1007 | $4 \cdot 2$ | Coronæ Aust.......a | 240.277 | -067 | 4•0873 | -0122 | +.0074 | $\begin{array}{llll}-38 & 3 & 37 & 47\end{array}$ | + 95 | 5.309 | 572 | - .105 | 16 | 9.02 | 4868 |
| 1008 | $5 \cdot 3$ | 17 Lyre.............seq. | 338.732 | --094 | $2 \cdot 2680$ | + -0012 | +.0095 | +32 2038.53 | - 13 | $5 \cdot 509$ | 317 | + - ${ }^{1}$ | 16 | $9 \cdot 85$ | 4872 |
| 1009 | $5 \cdot 3$ | 18 Lyrx................. | $343 \cdot 963$ | + 006 | 1400 | + -0012 | -0006 | +35 5635.63 | +-06 | $5 \cdot 497$ | 298 | --006 | 16:17 | 9.79:9.81 | 4873 |
| 1010 | 3.0 | 41 Sagittarii........... π | 349.055 | + ${ }^{\circ} 0$ | $3 \cdot 5699$ | - 0059 | 04 | -21 10 58.24 | + 39 | 5.470 | -498 | - 040 | 17: 18 | $9 \cdot 60: 9.66$ | 4874 |
| 10 | 5.6 | Lacaille 7997 | 1978.823 | 02 | + $6 \cdot 0626$ | - 0624 | + ${ }^{\circ} 00$ | $\begin{array}{llll}-66 & 50 & 0 \cdot 52\end{array}$ | - . 02 | + 5 '792 | + $\cdot 844$ | + 002 | 16 | $9 \cdot 59$ | 4882 |
| 10 | 6.0 | Lacaille 8029 | 723.253 | -.054 | 4.3677 | -0184 | + ${ }^{006}{ }^{*}$ | -45 2144×5 | + 6_{3} | 5.810 | $\cdot 607$ | - - 07^{*} | 17 | 9.04 | |
| 1013 | 6.0 | 19 Lyre | 755.847 | + 009 | $2 \cdot 2999$ | + -0012 | -.0009 | +31 $6 \quad 59.04$ | + .07 | 5.848 | 318 | - 007 | 16 | 9.56 | 4885 |
| 1о | $5 \cdot 3$ | 21 Aquilx. | $840 \cdot 192$ | +-002 | $3 \cdot 0248$ | -0015 | -002 | +2724.50 | + -06 | 5.911 | -419 | - -006 | 16 | $9 \cdot 89$ | 4887 |
| 1015 | $5 \cdot 1$ | 42 Sagittarii........... ψ | 924.616 | - .030 | $3 \cdot 6818$ | -0079 | +.0030 | -25 25 45'19 | + 35 | $5 \cdot 944$ | 510 | 035 | 21 | 9.92:9.90 | 4891 |
| 1016 | 5.6 | 22 Aquilx | 19 1134.085 | -006 | + 2.9693 | -0012 | +•006 | + 43929.42 | + 13 | +6.145 | + ${ }^{409}$ | -014 | 16 | $9 \cdot 36$ | 4902 |
| 1017 | $5{ }^{\circ}$ | 43 Sagittarii d | $1147 \cdot 088$ | + $\cdot 009$ | 3.5125 | -0062 | -0009 | -19 $755^{1} 77$ | + 18 | $6 \cdot 158$ | $\cdot 484$ | - -019 | 16 | 9.68 | 4903 |
| 1018 | $7 \cdot \bigcirc$ | Lacaille 8050 | 11 49.957 | -017 | 4.6870 | -0264 | +.oor8 | -51 458.20 | + 45 | $6 \cdot 134$ | -648 | - -047 | 17 | 9.59 | 4904 |
| 10 | 8.9* | Gilliss P.Z. $13504 \ldots$ | 1227.73 | | $40^{\circ} 647$ | 7.010 | | $\begin{array}{ll}-88 & 3 \\ 49 & 89\end{array}$ | | $6 \cdot 233$ | 5.629 | | $12: 13$ | 11 38 : 1144 | |
| 1020 | $5 \cdot 3$ | 25 Aqnile............. ω | $13 \quad 7 \cdot 357$ | + ${ }^{\circ} \mathrm{oor}$ | 2.8160 | 004 | --0001 | +11 24.53 .87 | | 6.299 | 387 | + ${ }^{\text {oli }}$ | 20:19 | $9 \cdot 34: 9 \cdot 16$ | 4914 |
| 1021 | 4.0 | Sagittarii.......... β^{1} | 191527.013 | + $\cdot 001$ | + 4.3214 | -0199 | -00 | -44 38 48.53 | + 17 | +6.462 | + 594 | - 019 | 16 | $9 \cdot 14$ | 4929 |
| 10 | 4.1 | Sagittarii..a | $1657 \cdot 576$ | - $\cdot 023$ | 4.1644 | -0169 | +-0025 | -40 48×15.77 | + $1 \cdot 18$ | $6 \cdot 480$ | 571 | $\cdot 126$ | 16 | $9 \cdot 37$ | 4936 |
| $1023+$ | $5 \cdot 7$ | Lacaille 8091....br... | $1946 \cdot 294$ | + ${ }^{\circ} 5$ | $4 \cdot 8295$ | -0337 | -0057 | -54 31 28.89 | 14 | $6 \cdot 853$ | -658 | +.015 | 16 | $9 \cdot 53$ | 4946 |
| 10 | $5 \cdot 4$ | 31 Aquilæ.............. ${ }^{\text {b }}$ | $2012 \cdot 578$ | -468 | $2 \cdot 8611$ | -012 | +-0494 | +1143 54.96 | - 5.97 | $7 \cdot 503$ | 395 | + 630 | 16 | 9.47 | 950 |
| 1025 | 3.4 | 30 Aquilx.............. δ | $2027 \cdot 580$ | $\cdot 163$ | 3.0253 | -0019 | +-0169 | + $25455^{\circ} 43$ | | 6.971 | -414 | + 077 | 17: 16 | $9 \cdot 65$ | 4953 |
| 1026 | 5.8 | cail | $192037 \cdot 376$ | - - 009 | + $3 \cdot 7959$ | -112 | +•009 | -29 56 28.07 | + 55 | +6.853 | + ${ }^{517}$ | - -055 | 16 | 10.09 | 4955 |
| 10 | $6 \cdot 4$ | Bradley 245 | 21 17.326 | + ${ }^{1} 37$ | $2 \cdot 4813$ | + 0017 | -.0137 | +24 4349.43 | $+6 \cdot 31$ | $6 \cdot 331$ | 334 | - $63 \mathrm{3I}$ | 16 | 10.0 | 4961 |
| 102 | $5 \cdot 8$ | 5 Vulpeculæ | ${ }^{21} 51 \cdot 238$ | + ${ }^{\circ} 05$ | $2 \cdot 6186$ | -0005 | -000 | +19 5356.22 | + 37 | 6.970 | 54 | -39 | 16 | $9 \cdot 45$ | 4965 |
| 1029 | $4 \cdot 6$ | 6 Vulpecule | 2432.540 | + ${ }^{\circ} 83$ | $2 \cdot 4959$ | + 0010 | --0093 | +242743.44 | + ${ }^{\text {•oI }}$ | $7 \cdot 115$ | 335 | - II_{3} | 17 | $8 \cdot 95$ | 4976 |
| 1030 | $5 \cdot 3$ | 36 Aquile... | 2526.073 | - 006 | 3. 3^{381} | -0031 | +-0006 | - $25950 \cdot 81$ | + 12 | 7.288 | ${ }^{4} 423$ | -.013 | 16 | $9 \cdot 49$ | 4983 |
| 1031 | 6.0 | Lacaille 8129. | 1926 9.206 | + 022 | + 4.3343 | - 0233 | -.0023 | -45 29 1•08 | + 32 | + $7 \cdot 327$ | +-584 | -033 | 16 | $9 \cdot 69$ | 4984 |
| 1032 | $3^{\circ} \mathrm{O}$ | 6 Cyguipr. β | 2641.293 | + 002 | 2.4187 | + -0010 | -.0002 | +27 $445^{8} \cdot 22$ | + .08 | $7 \cdot 394$ | | - -009 | 17 | $9 \cdot 14$ | 4986 |
| 1033 | 5.0 | Telescopii........... | 27 47*929 | + 024 | 4*4619 | - -0270 | --0025 | -48 18 53.64 | + 36 | $7 \cdot 455$ | -600 | - -038 | 16 | $9 \cdot 46$ | 4991 |
| 1034 | $4 \cdot 8$ | 8 Cygni | $28 \quad 3.295$ | + 002 | 2.2288 | + 00011 | - | +341424.62 | + 03 | 7.511 | - 298 | - -003 | 16 : 17 | 9.98: 9.99 | 4992 |
| 1035 | 4.8 | 3^{8} Aquilæ............. μ | 2912.399 | '137 | 2.9312 | 012 | O143 | + $7957 \cdot 80$ | +1.45 | $7 \cdot 455$ | 394 | - ${ }^{152}$ | 24:23 | $9 \cdot 56$: 9'53 | 4995 |
| ${ }_{10}{ }^{6}$ | 5 | 39 Aquilæ..............к | 19 31 $30 \cdot 721$ | - ${ }^{\text {- }}$-202 | + 3.2292 | -0045 | +.0002 | -7 14 59.85 | + $\cdot 02$ | + $7 \cdot 792$ | + 430 | - ${ }^{\circ} 002$ | 16 | $8 \cdot 76$ | 5003 |
| 1037 | $5 \cdot 8$ | 4 Sagittæ.......... ... ϵ | 3245×790 | - -009 | $2 \cdot 7156$ | -0001 | +-0010 | +1614 16.86 | - 12 | $7 \cdot 907$ | - 361 | + or ${ }^{\text {a }}$ | 17 | $9 \cdot 39$ | 5010 |
| 1038 | 5.2 | 44 Aquilæ.............. σ | 3415.520 | + 001 | 2.9614 | -018 | -0001 | +5 51011.05 | | 8.014 | 392 | -000 | 16 | $9 \cdot 02$ | 5018 |
| 1039 | $5 \cdot 5$ | 54 Sagittarii............. | $34{ }^{59} 761$ | - 045 | 3.4398 | - :074 | +•0046 | -16 35 $21 \cdot 66$ | $+\cdot 51$ | $8 \cdot 019$ | 456 | - -054 | $25: 21$ | 973:9:43 | 5019 |
| 1040 | 4.5 | 6 Sagittz............. β | 3633.456 | $\cdot 001$ | 2.6939 | + 0001 | +-0001 | +17 1438.91 | + 35 | $8 \cdot 160$ | 355 | - -038 | 16 | 9. 27 | 5027 |
| 1041 | 5.2 | 55 Sagittariie | $193648 \cdot 043$ | -039 | + 3.4344 | - 0076 | +.0042 | | + 16 | + 8.201 | + ${ }^{454}$ | - -017 | 17:16 | $9^{\prime 2} 23: 9.25$ | 5028 |
| 1042 | $6 \cdot 7$ | Lacaille 8094. | $3737 \cdot 07$ | - 01 | 11.3154 | 5390 | +-0009 | -81 36000 | - 09 | $8 \cdot 293$ | 1-499 | + - OI | 52:141 | ${ }_{11} 39: 8 \cdot 51$ | 5030 |
| 1043 | 5.6 | Lacaille 8156. | $3753 \cdot 525$ | -012 | 6.9902 | - ${ }^{1} 464$ | +.0012 | -72 44 50\%09 | - 19 | $8 \cdot 325$ | 924 | + 020 | 16:17 | 9.68:9.65 | 5034 |
| 1044 | $5 \cdot 6$ | 10 Vulpeculx. | 3933.398 | -004 | $2 \cdot 4936$ | + -0009 | +-0004 | $4+253^{1} 57 \cdot 10$ | - 12 | $8 \cdot 450$ | 326 | + ${ }^{\circ} 13$ | 16 | 9.50 | 5039 |
| 1045 | $5 \cdot 7$ | Lacaille 821 | 3938.474 | +-005 | 3.8337 | - -0152 | -.000 | -32 $\mathbf{-}^{5} 599^{\circ}$ | + 27 | $8 \cdot 416$ | -503 | - -028 | 16 | $9 \cdot 64$ | 5040 |
| 1046 | 5.5 | Telescopii........... ν | $193951 \cdot 437$ | $\cdot 105$ | $+4.9205$ | - 0454 | +-0105 | 5-5666 11 61 | + 1-49 | +8.312 | + 648 | - '149 | 17: 18 | $9 \cdot 99$ | 5041 |
| 1047 | 5.1 | 56 Sagittarii f | $403{ }^{1 \times 692}$ | + -090 | 3.5033 | -0091 | --0095 | -20 066 | + 91 | $8 \cdot 418$ | -457 | -.096 | 16: 18 | 9'48:9*52 | 5044 |
| 1048 | $2 \cdot 8$ | 50 Aquilx.............. γ | 4130.361 | - 008 | 2.8523 | - -0011 | +-0009 | +10 $22 \quad 9.92$ | + 04 | $8 \cdot 587$ | $\cdot 372$ | - -004 | 18 | $9 \cdot 1$ | 5047 |
| 1049 | | 7 Sagitta.............. δ | $4255{ }^{\prime} 73^{1}$ | -001 | $2 \cdot 6746$ | + 0001 | +.0001 | +18 1714.64 | - .08 | $8 \cdot 713$ | $\cdot 348$ | + ${ }^{009}$ | 20 | $9 \cdot 41$ | 5052 |
| 105 | 5.6 | Lacaille 8239 | $45 \quad 3.239$ | -022 | 4.0851 | -0222 | +-0025 | -40 7 40.49 | + 22 | $8 \cdot 847$ | O | - 024 | 17 | $8 \cdot 97$ | 5060 |

No.	Mag.	Name.	Mean R.A. 1900%.	$\mu_{a} \Delta \mathrm{E}$.	Annual Variation $1900{ }^{\circ}$.	Sec. Var. 1900°.	$\begin{array}{\|c} \text { Proper } \\ \text { Motionl. } \end{array}$		$\mu_{\delta} \Delta \mathrm{E}$.	$\substack{\text { Annual } \\ \text { Variation } \\ \text { 1900 } 0 .}$	Sec. Var. 1900\%.	$\begin{aligned} & \text { Proper } \\ & \text { Motion. } \end{aligned}$	$\begin{aligned} & \text { No. of } \\ & \text { Obs. } \end{aligned}$	$\begin{aligned} & \text { Epoch } \\ & \text { 1900+. } \end{aligned}$	Boss No.
1051	0.6	53 Aquilx	$\left\lvert\, \begin{array}{ccc} 11 & \mathrm{~mm} & \mathrm{~s} \\ 19 & 45 & 54 \cdot 613 \end{array}\right.$	339	$+2.9274$	-0018	$+\cdot{ }^{\circ}{ }^{\circ} 61$	+ $+8{ }^{\circ} 6^{6} 18^{\prime \prime} \cdot 27$	3×5	$9 \cdot 317$	383		16	$9 \cdot 40$	
1052	$6 \cdot 3$	Lacaille	$45{ }^{56} 745$	$\cdot .028$	5.2717	-0638	+-0028	-61 2543.97		8-956	$\cdot 684$	5	16: 17	9.87: 9 979	
1053	var.	55 Aquilx.	$47{ }^{22} \cdot 75^{8}$.005	$3 \cdot 0573$	0032	+ 0005	+o4455.63	+ .08	9.043	394	- $\cdot 009$	16	9•17	5071
1054	4.	Sagittar	$4821 \cdot 887$	07	4.149	29	+.0008	-42 7 50.79	- 48	9.181	-535	052	18: 19	9.18:9.22	5078
1055	4.	Pavonis	$49 \quad 1 \cdot 885$	48	$7 \cdot 0172$	6.46		-73 10 $29 \cdot 10$	1.	9.049	908	- 132	16 :	- 16	84
1056	$3 \cdot 8$	60 Aquil	$195024 * 119$	023	+ 2.9469	15	+'0023	+6 $\mathrm{Cl}^{19.62}$	+ 4.81	+8.805	37	- 483	23	9.86:9.95	5093
1057	5.4	61 Aquilx.............. ϕ	51	. 012	$2 \cdot 8406$	-0011	+.0013	+11	- 08	$9 \cdot 381$	362	+ $\cdot 008$	17 : 18	$9.50: 9.44$	5099
2058	5^{1}	61 Sagittarii...........g	5216.802	04	4055	0084	+.0004	-154525.83	+ 8_{3}	. 343	434	- $\cdot 0.90$	16 :	9 19	5101
1059	$4 \cdot 4$	Sagittarii........... θ^{7}	5313.756	- 012	9144	195	- 3	-35 32 1 .98	+ 42	$9 \cdot 462$	499	04	17	$9 \cdot 45$	5108
1060	$3 \cdot 7$	12 Sagitte γ	5418.630	- 040	6674	002	042	+19 1313.63		$9 \cdot 605$	33^{8}	+ 016	20: 22	$9.51: 9.47$	5118
1061	$5 \cdot 8$	63 Sagittarii	195622.563		$+3.3639$	81	+.0022	-13 54 51*39		+9.767	- 425	-019	16: 18	9.26:9.23	5128
10	$4^{\cdot 6}$	62 Sagitt	56 30.661	- 026	$3 \cdot 6955$	- 0148	+'0027	-27 59 16.19		$9 \cdot 768$	467	+ ${ }^{\text {- }}$	17	$9 \cdot 67$	29
1063	$4 \cdot 9$	15 Vulpec	56 58.970	-.039	$2 \cdot 4698$	-0012	+.0039	+272837.40	. 06	9.800	10	+ 006	16	$9 \cdot 95$	32
1064	6.9	Mayer	$5748 \cdot 775$	+-025	3. 5606	21	--0027	-22 $52334 \cdot 82$	- . 23	9.882	448	+-025	18:20	9.14:9.02	5135
1065	$3^{\prime 6}$	Pavonis............. δ	58 57.017	1.882	$5 \cdot 9258$	-0933	2	-66 $26{ }^{2} 3 \cdot 71$	+11.21	8.795	$\cdot 772$	-1.146	16	$9 \cdot 78$	5138
1066	5.9	63 Aquilx.	$195915 \cdot 285$	- $\cdot 008$	+ 2.9309	- 0020	+.0009	+ 65944.43	- 20	+9.988	+ 367	+ ${ }^{\circ} \mathbf{0 2 1}$	16	9.29	143
106	$5{ }^{1}$	Telescopii	I9 5943.575	+ ${ }^{\circ} 026$	4.6160	43	--0027	$\begin{array}{lll}-53 & 10 & 0.96\end{array}$	+ -01	002	- 579	-001	$16: 17$	60	5147
10	6.3	Ls	20333.		$13 \cdot 327$	I $\cdot 060$	-001	-83 $37 \begin{array}{ll}7 \cdot 77\end{array}$	+ -01	10.290	1-663	- 002	4	$7 \cdot 28$	306
1069	3.2	65 Aquila	784	20	. 0967	-0042	21	- 175.86	-. 03	10.488	3^{81}	-003	30:24	9'50: $9^{\prime 02}$	71
1070	6.0	20 Vulpe	$749 \cdot 073$	+ ${ }^{0} 0$	46	12		+26 10 $48 \cdot 18$	+ 15	94	307	- 016	17	$9 \cdot 19$	517
1071	5.	66 A	2084.099		$+3.0994$	043			+ $\cdot 22$	+10.604	+ $\cdot 378$		16	-09	5179
1072	5°	67 Aquile..............	$939 \cdot 021$	O33	2.7759	-0005	$+\cdot 0036$	+1453 34.57		$10 \cdot 796$	337	$\cdot 051$	17	$9 \cdot 19$	
1073	4.	5 Capricorni.........al ${ }^{2}$	126.390	$\bigcirc 09$	283	-0085		61	-06	$10 \cdot 932$	402	-066	17: 16	9.21	5197
10	$6 \cdot 1$	4 Capricorni	128.999	- 021	3.5300	128	+-0023	-22	+ 3	10.895	427	- ${ }^{0} 34$	18	$9 \cdot 24$	5198
1075	$5^{\circ} 7$	24 Vulpecula	$1230 \cdot 319$	$\bigcirc 013$	668	\pm-0011	+-0013	+24 2146.45	+ 19	-935	309	- . 020	16	9.62	5201
107	37	6 Capricorni.	201230.494	- 041	+3.3318	085	+.0040	-125117.73	.05	+10.961	+ 403	+ ${ }^{005}$	22 :	$10^{\circ} 13$: 10002	5202
10	$6 \cdot 7$	Lapaille 840	14	$+\cdot 371$	4.3721	O8	-.0413	-50 18 31-25	$+2 \cdot{ }^{2}$	10.837	-521	- 258	17	8.99	5209
107	3.	9 Capricorni	1523.679	- ${ }^{023}$	$3 \cdot 3742$	O96	+	-15 5 50.45		$11 \cdot 167$	404	- 0	20:18	9*48:9.	5216
	$5 \cdot 8$	Sagit	15	-.055	$4 \cdot 0897$	-0297	$+\cdot 0059$	-42 215153.54	+ 97	11.082	491	- 104	16	$9 \cdot 29$	217
1080	1.8	Pavon	$1744^{\circ} 350$	- $\cdot 005$	4.7738	0595	+.0005	-57 $\begin{array}{lll} & 20 & 55\end{array}$	+ 79	11.250	569	- 086	17	$9 \cdot 17$	5223
1081	7.1	caille	2018	- 35	+15.054	- 1.640	31	-84 $4449{ }^{\circ} 40$	-29	+11.445	+1.803	+ - 03	49:165	$1 \cdot 39: 8.81$	1326
1082	$6 \cdot 2$	Bradley	1919.558	-008	68ı	-0177	9	-28 5915 150	-05	11.455	$\cdot 436$. 025	16	9.28	232
1083	5.1	69 Aquilæ	$2425{ }^{4} 493$	- 038	3.1373	-0054	42	- 3136.02	+	$11 \cdot 792$	- 365		16	$9 \cdot 97$	54
1084	$4^{\cdot 1}$	41 Cygni.	2518.571	-006	2.4505	+ .0020	+-0007	$+3025.02$	+ 04	${ }_{11} \cdot 872$	-283	- 004	16	$9 \cdot 06$	5255
1085	$5 \cdot 3$	Micro	$27 \quad 2 \cdot 884$	- 011	4.1389	349		-44 $51118 \cdot 50$	+ 36	11.957	$\cdot 478$	041	17:18	$8 \cdot 84: 878$	5266
1086	4.8	Pavouis.	$202718 \cdot 192$	- $\cdot 067$	+ 5.0029	'0771	O 1	-60 558.00	+ 1-59	+11.848	+ 579	- 168	16	49	5268
1087	$4^{\cdot 1}$	2 Delph	28 26•154	-	$2 \cdot 8665$	-0013	+.0006	+10 $5747 \cdot 37$	+ 25	12.069		. 26	$28: 2$	$9.98: 97$	5272
1088	5.	Pavoni		- 063	$5 \cdot 0678$	0828	067	-61 5225.27	+ 59	12.086	-583	-063	16	$9 \cdot 43$	5274
1089	$6 \cdot 3$	Octaut	$2942 \cdot 495$	'453	$7 \cdot 5576$	-3031	540	-76 3149.96	+ $\cdot 07$	12.1	$\cdot 876$	- $\cdot 008$	45:46	$8 \cdot 3^{8}$	5277
1090	$3 \cdot 1$	Indi α	$3032 \cdot 204$	- 040	$4 \cdot 2369$	-0402	039	-47 38 23.80	$\cdot 61$	$12 \cdot 302$	484	06	16:17	10.13:9.92	5281
109	$4 \cdot 7$	4 Delphini............ 5	$203038 \cdot 030$	- 025	+ 2.8047	-0005	+	+141945.12		+12.252	+ 319	4	16	9.59	5282
109	$3 \cdot 7$	6 Deiphiui........m. β	$3251 \cdot 668$	- 067	2.8131	-0004	+.0074	+14 1449.46	+ 33	${ }^{12} \cdot 364$	318	-037	23:21	$9.01: 8.88$	5291
1093	4.8	29 Vulpecula	343.374	- -038	6782	-0010	+.004I	+20 $510 \cdot 31$	+ 01	12.482	301	-001	16	$9 \cdot 29$	5301
1094	57	Lucaille 851	$34 \quad 3 \cdot 554$	- 030	3'7751	- 0229	+.0031	-33 47 770	$\cdot{ }^{\circ} 7$	12.490	426	+ 007	16	$9 \cdot 83$	530
109	$5 \cdot 3$	7 Delphiní.	$3416 \cdot 577$	- 220	$2 \cdot 91$	16	+.0213	+944 1.72	- 12	12.510	32	+ 012	16	10.35	5304
1096	54	15 Capricorni..........v	203421×491	+ 020	+ $3 \cdot 4197$	- 0122	-.0020	-18 $2927 \cdot 18$	+ 21	+12.483	+ $\cdot 384$	- 021	18:17	10.03	5306
1097	3.9	9 Delphini............ α	34 59.653	- 043	2.7865	-0001	+.0044	+15 $3332 \cdot 93$	+-08	12.539	$\cdot 312$. 008	16	9.67	5310
1098	$3 \cdot 4$	Pavonis.	35 56.977	+ 072	$5 \cdot 4607$	-1163	--0079	-66 3344.27	- 12	${ }^{2} 2.625$	-613	$+{ }^{-013}$	18	9.14	5315
1099	$4 \cdot 7$	Iudi...	3642.05_{4}	- $\cdot 141$	4.4271	-0508	+-0.53	$-521641 \cdot 81$	+ ${ }^{42}$	$12 \cdot 615$	497	-.048	15.17	$9 \cdot 23: 8 \cdot 85$	5318
1100	4.	11 Delphini..	$3847 \cdot 424$	+ $\cdot 14$	$2 \cdot 8007$	-0002	16	+1442 56.15	+ 45	12.754	-308	- -051	17:18	$8 \cdot 74: 8.78$	5323

No.	Mag.	Nam	Mean R.A. $1900^{\circ} 0$.	μ_{a}	Annual Variation $1900^{\circ} \mathrm{O}$.	Sec. Var. $1900^{\circ} 0$.	Proper Motion.	Mean Dec. $1900^{\circ} 0$.	$\mu_{\delta} \Delta \mathrm{E}$.	Annual Variation $1900^{\circ} 0$.	Sec. Var. 1900 ' 0.	Proper Motion.	No. of Obs.	Epoch 1900 +.	Boss No.
			20.10.			S	0042								
11	$4^{\cdot 2}$	16 Capricorni 4	$204010 \cdot 540$	+.038	$+3.5590$	$\cdot 0167$	0042	2537 50.75	1.44 $+\quad .87$	$+12.739$	+ 391	-. 159	17: 18	$9.13: 9.03$	5328
1102	$5 \cdot 3$	Microscopii	$4142 \cdot 681$	-142	4.0826	-0362	-0156	4421 II ${ }^{\text {c }} 55$	+ $\cdot 87$	$12 \cdot 903$	- 449	-097	16	$9 \cdot 13: 8 \cdot 97$	5332
1103	$4^{\circ} 4$	12 Delphini............ γ	$42 \quad 1 \cdot 112$	+-022	$2 \cdot 7832$	+ .0002	23	+154547*69	$+2 \cdot 00$	12.817		204	16	9.78	5335
1104	$2 \cdot 5$	53 Cygni................є	$4210 \cdot 166$	- 292	$2 \cdot 4265$	-0028	288	+33 $3547 \cdot 36$	- 3.27	13.352	267	+ 322	16	$10 \cdot 15$	5336
1105	$3 \cdot 8$	2 Aquarii ϵ	$42 \quad 15.856$	- 019	$3 \cdot 2507$	-000	-0019	- 95143.45	+ 34	13.003	354	-034	18:17	10.04:10.00	5337
1106	$4^{* 6}$	3 Aqua	$204227 \cdot 721$	+.004	$+3 \cdot 16$			$52338 \cdot 77$	+ 39	+13.011	+-345	039	16	$10 \cdot 05$	5338
1107	$5 \cdot 3$	Indi 6	4416.409	04	$4 \cdot 36$	12	-.0005	$-515^{8} 49^{\prime} 70$	+ 32	13.133	74	-.037	17 : 18	8.77	5354
110	$4^{* 1}$	18 Capricorni...........	45 51.313	+.006	3.5885	- 0184	-0006	-2717	+ 13	$13 \cdot 260$	6	I	16:17	9*49:9.45	5363
1109	$3 \cdot 6$	Indi	46	14	$4^{*} 7223$	34	15	-5849 53.15	+ 24	13.323	8	26	17:18	9*43:9*37	5367
1110	$5 \cdot 6$	Lacail	$47 \quad 9.945$	-.037	3•9179	308	40	-40 I1 $3 \cdot 83$		$13 \cdot 264$	20	-096	16:18	$9 \times 37: 9 \times 49$	5369
1111	$4 \cdot 8$	6 Aquarii μ	204715711	- 025	$+3 \cdot 2390$	- 0083	+ 0025	- 92131.48	+ 35	+13.331	+ 346	-.035	23:17	10.02:9.92	5371
1112	6	19 Capricorni	$49 \quad 8 \cdot 854$	+ .035	3956	28	-.0038	-1818 18-28	+ 17	13.469	360	- 019	16:17	$9 \cdot 17: 9 \cdot 15$	5374
1113	$5 \cdot 3$	32 Vulpeculre	50.17-858	+ $\cdot 006$	2•5554	+ 0026	-.0007	+27 4037×75	+ 62	$13 \cdot 561$	268	-02	23: 20	$9.09: 8.82$	5379
1114	$5 \cdot 3$	Octantisa	$5236 \cdot 55^{2}$	+ 024	$7 \cdot 4332$	501	28	$-77 \quad 2421 \cdot 52$	$+3.07$	$13 \cdot 349$	4	362	$33: 34$	$8 \cdot 48: 8.47$	5390
1115	6.0	Lacai	5314.650	+ 086	$4 \cdot 2920$	0519	$-\cdot \operatorname{cog} 8$	-51 3924.95	$-\mathrm{I} \cdot 08$	13.878	445	+ $\cdot 127$	19	$8 \cdot 74: 8 \cdot 47$	5391
1116	$7^{\circ} 0$	G.	$205343 \cdot 67$		+15.699	472		-85 36 177 ${ }^{\circ} 00$		+13.782	+1.656		56:69	1I $40: 10.53$	
1117*	$4 \cdot 8$	Microscopii γ	$55 \quad 9.559$	- $\cdot 005$	11	235	+.0006	$-323^{8} 55 \cdot 12$	- 04		383	+-004	17	9.06	5402
1118	$5{ }^{\circ} 5$	Micr	$56.34 \cdot 68 \mathrm{I}$	+-014	3	-0302	-.0017	$\begin{array}{llll}-39 & 1 & 19.82\end{array}$	+ 99		396	-120	19	$8 \cdot 23$	5411
1119	$7{ }^{\circ} 4$	C.G.A	$5718 \cdot 07$		$16 \cdot 919$	3•036		$\begin{array}{lll}-86 & 3 & 0.95\end{array}$		$14^{\circ} 007$	1 759		58:68	'39:10.68	...
1120	5*	22 Capricorni.	$205842 \cdot 888$	+.028	3.4199	-142	.0030	$\begin{array}{llll}-20 & 15 & 2 \cdot 33\end{array}$	$\cdot 40$	$14 \cdot 052$	348	-043	17	$9^{*} 22$	5417
1121	$4^{\circ 1}$	23 Capricorni.......... θ	$21 \quad 0 \quad 19.695$	-.054	+ 3*3779	- .0128	+. $\cos 7$	-17 $3749^{\prime} 70$	+ 62	+14.129	+ 342	066	22: 17	$55: 9$	5427
1	$7^{\circ} 0$	Lacaille 8678	- $59 \cdot 161$	-.031	4*1714	-0474	+.0036	-49 20 $25^{\circ} 23$	+ 26	14.206	22	-.030	18	$8 \cdot 66$	5429
1123	$4^{* 6}$	24 Capricorni..........A	116.804	+ 019	3.5165	78	22	-25 $24 \quad 20 \cdot 82$	+ 45	$14 \cdot 203$	-354	-.051	18	8.77	5430
II 24	$5 \cdot 3$	Pavonis..............	$358 \cdot 140$	- 044	5'7043	04	+.0049	$\begin{array}{llll}-70 & 32 & 2 \cdot 98\end{array}$	+ 30	14.384	572	034	17: 18	$9.04: 8.89$	5439
1125	$4^{\cdot 6}$	13 A	$48 \cdot 933$	- 0.05	3.2721	- 0098	+.0063	-11 $4^{6} 36 \cdot 35$	+ 11	14.417	326	013	23	$9.03: 8.62$	5441
6	$4^{\circ} 7$	5 Equulei.........seq. γ	$21 \quad 5 \quad 28 \cdot 783$	- -033	+2.9178	- .0011		+ 943 41.6I	+ 1.49	+14.349	+ $\cdot 288$	161	17	- 26	5443
1127	5%	3 Pi	$721 \cdot 728$	-.065	661	-	+.0071	-28 1 $\quad 139^{\circ} 34$	+ 1.27	14.485	50	- 138	16	. 21	5448
1128	$6 \cdot 0$	Laca	$837 \cdot 501$	- -009	$4 \cdot 3094$	- 0.0588	+-0009	-53 4036.58	+ 41	14.657	2 I	-. 043	16	- 55	5451
1129	$3 \cdot 3$	64 Cygn	$840 \cdot 762$	+.002	$2 \cdot 5515$	+ .0040	- 0002	+29 $4^{8} 59.40$	+ 57	14.643	-247	- 050	16	$9 \cdot 60$	5452
1130	$6 \cdot 4$	Lacail	$1033 \cdot 56$		$13 \cdot 882$	- $2 \cdot 138$				14.813	1.358		58:71	1140: $10 \cdot 72$	
1131	-	8 Equuleía	2 F 10 49.580	-.038	$+3 \cdot 0001$	-0027	038	+ 4502.44	+ 86	+14.742	+-289	-.087	$18: 16$	9'99: $9^{\prime \prime} 90$	5461
1132	7°	Lacaille 8743	113.981	+.031	4.1073	-0476	33	-49 $8 \quad 2 \cdot 11$	+ 80	14.757		6	16	32	5463
$1133 *$	4	Microscopii	1152.598	-.042	$3 \cdot 6488$	- -0243	+.0045	-32 $35 \quad 26 \cdot 03$	+ 31	- 86	350	-.034	16	925	5464
1134	4.4	66 Cygui................v	$1348 \cdot 325$	-.015	$2 \cdot 4653$	+ .0050	+.0016	+34 $2837 \cdot 07$	+ 19	$\cdot 982$	32	021	$18: 17$	$\cdot 26$	5471
1135	$5 \cdot 0$	Microscopii........ θ^{1}	$1422 \cdot 048$	-.062	$3 \cdot 854$	- .0345	+.0075	$\begin{array}{llllllllllllll} & 56 \cdot 22\end{array}$	-	15.035	-366	-000	19	8.28	5473
1136	$4 * 3$	32 Capri	2116	22	+	- 0130	+•0022	-17	- . 06	+15'174	+.313	+ .006	27:20	$9.89: 9.53$	5484
1137	$4 \cdot 3$	1 Pegas	17 27.769	-. 065	-7734	+ .0019	+.0072	+192236.20	- $\cdot 5^{2}$	15.271	-258	+ 0.058	17:18	9.06:8.97	5489
$1138+$	$6 \cdot 1$	Microscopiim. θ^{2}	$18 \quad 2.448$	20	. 8405	-0349	+-0022	$\begin{array}{llll}-41 & 26 & 6 \cdot 87\end{array}$	- .03	15.249	357	+.003	17	9-16	5492
1139	$4 \cdot 3$	Pavonis γ	$18 \quad 10.893$	- . 130	5.0170	-124 I	+.0134	-65 48 59.53	-7.69	16.065	-469	+ 8 III	16:17	$9 \cdot 67: 9 \cdot 4$	5493
1140	$6 \cdot 4$	Indi.................. γ	197.620	+.001	4•3089	-0642	- 0001	-55 5 5 31.93	- 38	15.349	-399	+.04I	16	$9 \cdot 24$	5497
11414	5	8809pr.	$212036 \cdot 812$	+.050	$+3 \cdot 8645$	- -0373	-.0058	-42 58 50.98	. 06	+15.398	+.354	+.007	18: 19	8.68: 8.59	5506
1142	3	34 Capricorni. ζ	2057.571	-000	3.4325	-0166	0	-22 5040.04	$\cdot 22$	15.434	-313	+.023	21:23	9777:9*76	5507
1143	$4 \cdot 6$	36 Capricorni.......... b	$23 \quad 1.482$	-.086	$3 \cdot 4276$	-0163	+.0095	-22 14 34.09	+ 07	15.517	- 310	-008	19	9.09	5513
1144	$2 \cdot 9$	22 Aquarii β	$26 \quad 17 \cdot 765$	- . 010	3.1608	-007I	+.0010	- 6 0 40.49	+ 0 \%	$15 \cdot 698$	- 280	- 007	21:23	9'54: 9'75	5527
1145	$5 \cdot 8$	Lacaille 88	$2654 \cdot 832$	+.020	$3 \cdot 9063$	-0413	-.0023	-45 $\begin{array}{llll}-47 & 26.45\end{array}$	+ 11	15.726	- 346	-.012	18	8.77	5530
1146	$6 \cdot 5$	Lacaille 8842.........	$21304 \cdot 180$	- 021	$+4.8407$	- $\cdot 1158$	+.0025	-65 $161818 \cdot 22$	+ . 03	+15.905	+ 423	-.003	19:20	$8 \cdot 44: 8 \cdot 37$	5541
1147	$3 \cdot 7$	Octant	$3021 \cdot 968$	- 122	6.8523	-3826	+.0140	-77 50	+2.01	工5.694	-60	- 230	37:38	$8 \cdot 73: 8 \cdot 76$	5544
1148	$4 \cdot 8$	23 Aquarii.......	$3225 \cdot 841$	-.072	3.1969	-0082	+.0075	- 8 I8 10.43	+ 23	16.009	274	-. 024	16:18	$9.55: 9.62$	5551
1149	$7 \cdot 7$	Lacaille 8751	$\begin{array}{ll}33 & 6 \cdot 97\end{array}$		11.251	1-557		$\begin{array}{lllll}-84 & 25 & 10.82\end{array}$		16.069	-974		$51: 63$	11'42 : 10.65	
1150	$6 \cdot 7$	Lacaille 87	$3416 \cdot 18$		$13 \cdot 149$	$2 \cdot 314$		-85 29 46.51		$16 \cdot 129$	$1 \cdot 132$		$53: 65$	1142 : 10.68	

1117. I Piacis Anstralis in Auwers' Bradley.
1118. $4^{\circ} 7,11 \quad 2^{\prime \prime} \cdot 2 \quad 272^{\circ} \quad 1901{ }^{\circ} 6$.
1119. 4 Pisuis Australis in Auwers' Bradley.
$1138.6 .4,7^{\circ} 6 \quad 1^{\prime \prime} \circ 0 \quad 292^{\circ} \quad 19000^{\circ}$.
$\begin{array}{llll}1141 . & 5 \cdot 8,8 \cdot 8 & 2^{\prime \prime} 9 & 146^{\circ} \\ 1900.6 .\end{array}$

No.	Mag.	Nam	Mean R.A. 1900°.	$\mu_{a} \Delta \mathrm{E}$.	Annual Variation 1900°.	Sec. Var. 1900.0.	Proper Motion.	Mean Dec. 1900%.	$\mu_{\delta} \Delta \mathrm{E}$.	Annual Variation 1900°.	Sec. Var. $1900^{\circ} 0$.	Proper Motion.	No. of Obs.	Epoch $1900+$.	$\begin{aligned} & \text { Boss } \\ & \text { No. } \end{aligned}$
			h m 8	-	$3 \cdot 3$		$\stackrel{8}{8}$								
1151	$3 \cdot 7$	40 Capricorni γ	$213433 \cdot 216$	117	$+3.3294$	-0131	+.0131	$\begin{array}{lll}17 & 6 & 50 \cdot 98\end{array}$	+ 18	$+16 \cdot 123$	+ $\cdot 282$	-021	19:20	$8.93: 8.65$	5562
1152	$5 \cdot 4$	41 Capricorni	$36 \quad 19.233$	- -057	$3 \cdot 4235$	-0174	+.0067	$234255 \cdot 75$	$\cdot 79$	$16 \cdot 142$	286	-093	20	$8 \cdot 49$	5568
1153	$4 \cdot 8$	43 Capricorni..........к	$37.4 \cdot 642$	-.093	3.3560	-0145	+.0100	$\begin{array}{lllllllllllll}-19 & 19 & 19.83\end{array}$	-07	16.266	279	-007	17	$9^{*} 29$	5570
1154	$6 \cdot 7$	Octantis............ ${ }^{\text {B }}$	37 41.30	-. 25	$68 \cdot 391$	$88 \cdot 544$	+-017	$\begin{array}{llll}-89 & 19 & 3.92\end{array}$	+ 41	$16 \cdot 263$	5•799	-. 041	67: 115	11.45 : 10.03	5576
1155	$4 \cdot 4$	9 Piscis	3859.562	- 024	$3 \cdot 5855$	-0259	+.0029	$-3328 \quad 56 \cdot 42$	+ 72	16.285	-295	- 086	20	8.37	55^{82}
1156	2.4	8 Pegasit	213916.514	16	$+2.9464$	-0005	+.0017	+ $92459^{\circ} \mathrm{O}$	+ 01	+16.384	+ ${ }^{2} 40$	-.001	17	9×49	5584
$1157+$	$4^{\circ} 2$	10 Pegasi m. к	$40 \quad 6.996$	- -023	$2 \cdot 7145$	+ 0047	+.0024	+25 11 7.04	- 02	16.429	-220	+ $\cdot 002$	16	$9 \cdot 42$	5592
1158	$5^{\circ} 6^{\circ}$	48 Capricorni λ	$41 \quad 9.212$	- -014	$3 \cdot 2333$	100	+.0016	-II 49 37.93	+ 10	$16 \cdot 468$	261	- -011	18: 19	8.88: $8 \cdot 77$	5596
1159	2.8	49 Capricorni.......... δ	$4131 \cdot 552$	- 170	$3 \cdot 3163$	-0125	+-0179	-16 $3454 \cdot 74$	+2.80	$16 \cdot 202$	-269	- $\cdot 295$	21:20	9'51: $9 \cdot 50$	5600
1160	$5 \cdot 8$	Lacaill	$41^{\circ} 45 \cdot 794$	- 133	$3 \cdot 9215$	-046r	+.0144	-47 $4533 \cdot 56$	+2.84	$16 \cdot 202$	318	- 307	17	$9 \cdot 24$	5601
1161	5*6	Indi.................. 0	214219.812	+.080	$+5 \cdot 1500$	- 1651	-.0084	-70 5	- 0	8	+ 417	.000	16	$9^{\circ} 57$	5607
1162	$5 \cdot 3$	14 Pega	$45 \quad 25 \cdot 235$	- 018	2.6518	+ 0064	+.0020	+29 $4230 \cdot 20$	+ 25	$16 \cdot 662$	-207	- $\cdot 027$	19	$9 \cdot 23$	5617
1163	$5 \cdot 3$	51 Capricorni.......... μ	47 50•925	- •195	$3 \cdot 2754$	12	+.0211	-14 1 $21 \cdot 12$	- .08	$16 \cdot 814$	255	+ $\cdot 009$	16	$9 \cdot 24$	5623
1164	$3^{\cdot 1}$	Gruis................ γ	47 52.644	- .080	3.6474	- .0310	+'0093	-37 506.80	+ $\cdot 15$	$16 \cdot 790$	-283	- $\cdot 017$	19	$8 \cdot 63$	5624
1165	$5 \cdot 1$	16 Pegas	4830.695	-.001	2.7272	+ .0053	+.0001	+25 2716.07	- 0 I	$16 \cdot 838$	- 209	+ $\cdot \infty 1$	16	$9 \cdot 77$	5627
1166	8.1	Lacai	$214841 \cdot 10$		+16.730	-4.687	...	-86 $5747 \cdot 59$		$+16 \cdot 845$	1.315		41:49	11.45: $10 \% 8$	
1167	4*6	.	$51 \quad 6.964$	-.055	4.1143	- 0660	+.0064	-55 $2884 \cdot 87$	+ 20	16.936	313	-.024	19: 21	$8 \cdot 59: 8 \cdot 46$	5635
1168	$6 \cdot 6$	Maye	53 9.258	- $\cdot 009$	3'3523	- 0160	+.0010	-21 $3936 \cdot 37$	+ 03	17.050	-250	- ${ }^{0} 02$	19	$8 \cdot 53$	5645
1169	$4 \cdot 9$	Indi	$5547 \cdot 009$	$-4 \cdot 206$	$4 \cdot 6243$	-0763	+ $\cdot 4818$	-57 12 10. 11	+22.13	14.579	-387	-2.591	$18: 21$	$8 \cdot 73: 8.54$	5654
1170	$5 \cdot 9$	28 Aqua	55 58.038	- . 01	09	-0038	+.0001	+0 728.09	+ .06	17.176	- 223	- .006	18	$9 \cdot 25$	5655
1171	$5 \cdot 8$	20 P	21 5613.068	-.033	+2	+ .0014	+.0036	+123826.39	+ 51	$+17.137$	212	-.056	19	$9 \cdot 14$	5658
1172	$4 \cdot 7$	31 Aqua	$\begin{array}{llll}21 & 58 & 8 \cdot 554\end{array}$	- .008	3. 1045	-0050	+.0009		+ 10	$17 \cdot 268$	222	- 011	18	$9 \cdot 24$	5663
1173	4.6	Gru	$22 \quad 0 \quad 5 \cdot 407$	+.023	$3 \cdot 6304$	-0335	- $\cdot 0028$	-40 1 $134 \cdot 29$	+1.00	$17 \cdot 245$	-257	- 120	20	$8 \cdot 34$	5672
1174	5.1	22 Pegasi ν	- 38.272	-.068	3.0265	-0018	+.0073	+ 43411.61	-66	${ }_{17} \cdot 481$	$\cdot 213$	+.092	17	$9 \cdot 37$	5674
1175	$2 \cdot 9$	34 Aquariia	- 38:930	- $\cdot 009$	$3 \cdot 0826$	-004 1	+.0029	-0 $4^{8} 20 \cdot 84$	+.06	17.383	- 216	- 006	21:24	$9 \cdot 51$	5676
1176	4.4	33 Aquarii..............	22 I 2.297	-.025	+ 3.2445	- -0112	+.0025	-14 211819	+ 60	+17.346	$\cdot 228$	- 060	17:18	9'97:10'00	5680
1177	1•7	Gruis a	156.115	- .112	8011	-0455	+.0116	$-47 \quad 2644 \cdot 06$	+1.56	17.283	-266	- 162	17:18	$9 \cdot 62$	5684
1178	$3 \cdot 9$	24 Pegasi...............t	221.481	- 193	2.7903	+ 0063	+.0220	+24 51 23.94	- 16	$17 \cdot 481$	-194	+ . 018	18	$8 \cdot 78$	5688
1179	$4 \cdot 6$	14 Piscia Aust......... μ	$233 \cdot 127$	-.051	3.5114	- 0260	+.0057	$-332835 \cdot 73$	+ 36	$17 \cdot 432$	244	-.040	19:18	$8 \cdot 96: 9$-11	5689
1180	$5 \cdot 8$	27 Pega	$447 \cdot 664$	+.038	$2 \cdot 6547$	+ .0088	-.0045	+32410.95	+ 60	17.495	-179	- ${ }^{\text {- } 072}$	19	$8 \cdot 34$	5701
II8I	3.7	26 Pegasi θ	$\begin{array}{llll}22 & 5 & 9.526\end{array}$	- 175	$+3.0266$.0011	+.6184	+ 54221.25	- 31	$+17.616$	+ $\cdot 206$	+.034	18:20	9'50: 9:20	5703
1182	$4 \cdot 3$	29 Pegasi	$532 \cdot 692$	+.009	$2 \cdot 6606$	+ .0089	- 0010	+32 4114.61	+ 21	17.575	178	- .023	17	9•24	5709
1183	$6 \cdot 5$	28 Pegasi.	$546 \cdot 564$	+.020	8316	+ .0048	-'0021	+20 29 11113	+ 12	17.595	190	- .013	17: 18	$9 * 49$	5710
1184	$6 \cdot 7$	Lacaille 9	$832 \cdot 555$	-. 413	3.6809	-0359	+.0489	-41 $5126 \cdot 24$	$+6.65$	16.940	- 247	-.782	20: 21	$8.44: 8.51$	5725
1185	$5 \cdot 5$	16 Piscis Aus	8. $38 \cdot 797$	- 015	3.4097	-0210	+-0018	$-281545 \cdot 40$	+ 03	17×724	:225	- .003	18:20	$8 \cdot 36: 8 \cdot 4^{2}$	5726
1186	4.9	Cras μ	$22 \quad 935 \cdot 615$	--039	$+3.6311$	- -0361	+•0043	-41 $5039^{\circ} \mathrm{O}$	- $\cdot 28$	+17.796	+ 238	+.03I	18: 19	9.11:9.00	5733
1187	$4 \cdot 4$	43 Aquarii.............. θ	II 33.551	-. 074	$3 \cdot 1684$	-0075	+•0074	-8 16 52.87	+ 19	17.825	- 203	- .019	21: 16	9'95:977	5744
1188	$2 \cdot 9$	Touc	II 39.125	+ $\cdot 108$	4.1482	-0845	-.0111	-60 $45 \quad 29 \cdot 19$	+ 30	$17 \cdot 817$	- 267	-.031	16:18	9*75:9774	5747
1189	$5 \cdot 6$	Lacaille 9	$11.42 \cdot 828$	-. 434	- 3.9588	-0605	+.0459	-54 $6377 \cdot 5^{8}$	$+6.44$	$17 \cdot 169$	$\cdot 258$	--681	16	$9 \cdot 46$	5748
1190	$6 \cdot 0$	Octantis	$1234 \cdot 83$	+ $\cdot 46$	12.836	3.200	-. 040	$\begin{array}{llll}-86 & 28 & 33 \cdot 33\end{array}$	- 60	$17 \cdot 952$	-835	+.067	63:168	$11.45: 8.97$	5750
1191	$5 \cdot 5$	46 Aquarii.............. ρ	$2214{ }^{\circ} 5{ }^{\prime} 291$	6	+ 3'1595	- •0075	+.0006	- 8119 24.19	+ .05	+17.972	+ 196	- .005	16	$9 \cdot 23$	5755
1192	$5 \cdot 6$	Indi.	$16 \quad 5 \cdot 058$	-2.897	$5^{\circ} 2441$	-2075	+. 2865	-72 $4436 \cdot 44$	$+6.97$	17.325	-348	- 694	15:16	10'11: 10005	5758
1193	$5 \cdot 4$	47 Aquarii...............	$16 \quad 5 \cdot 377$	+-013	3. 3086	-0159	-.0014	-22 $\quad 5 \begin{array}{llll} & 5 & 89\end{array}$	+ 80	$17 \cdot 934$	- 204	-.087	18	9×17	5759
1194	3.9	48 Aquarii γ	16 29.601	-.073	$3 \cdot 0998$	- $\cdot 0041$	+.0082	- 15328.64	- . 08	18.046	-190	+ 000	17: 19	8.95: $8 \cdot 90$	5761
1195	5'1	31 Pegasi	$1635 \cdot 733$	-.003	2.9519	+.0019	+.0003	+11 $4^{2} 4^{.82}$	- 05	18.046	-180	+.005	16:17	$9 \cdot 82: 9.61$	5762
1196	$4 \cdot 9$	32 Pegasi	$221642 \cdot 275$	- 0004	+2.7654	+ .0083	+.0004	+274936.47	$+\quad .02$	+18.043	+ $\cdot 168$	- .002	16	$10 \cdot 38$	5763
$1197 \dagger$	-	Gruis...........br. π^{2}	1659.765	- $\cdot 215$	$3^{\prime} 7051$	-0433	+.0223	$-46 \quad 25 \quad 54 \cdot 50$	+ 57	$17 \cdot 995$	- 228	- 061	16: 18	$9 \cdot 63: 9.41$	5765
1198	$4 \cdot 6$	52 Aquarii. π	$20 \quad 10 \cdot 254$	-.006	3.0645	-0027	+-0007	+o52 11.33	- . 03	$18 \cdot 178$	-181	+.003	19	$9 \cdot 24$	5777
1199	$5 \cdot 7$	Gruis................	$2247 \cdot 693$	-.034	3.5320	-0324	+-0040	$\begin{array}{llllllllllllll}-39 & 3^{8} & 17 & 34\end{array}$	+1.43	$18 \cdot 101$	-204	- ${ }^{170}$	20	$8 \cdot 44$	5789
1200	411	Gruis................ ${ }^{1}$	2317.715	- .020	$3 \cdot 6034$	-0386	+•0024	-44 $023 \cdot 25$	- -01	18.289	- 207	+ 001	20	$8 \cdot 37$	5791

No.	Mag.	Name.	Mean R.A. $1900^{\circ} 0$.	$\mu_{a} \Delta \mathrm{E}$.	Anmal Variation i900\%.	Sec. Var. 1900°.	Proper Motion.	Mean Dec. $1900^{\circ} 0$.	$\mu_{\delta} \Delta \mathrm{E}$.	Annual Variation 1900\%.	Sec. Var. 1900 o.	Proper Motion.	No. of Obs.	Epoch $1900+.$	$\begin{aligned} & \text { Biss } \\ & \text { No. } \end{aligned}$
			$h \mathrm{~m}$ s			s	s								
1252	$6 \cdot 0$	Lacaille 9	$1555^{\circ} 880$	+ .019	2034	-0172	-002	-27 $32 \begin{array}{ll} & 3\end{array} 6$	+ 41	19.631	-081	-.046	18	$8 \cdot 93$	6007
1253	$4^{\circ} 2$	98 Aquarii.. b^{2}	$1743 \cdot 100$	+.074	$3 \cdot 1560$	- .0122	-.0087	$-203^{8} \quad 48 \cdot 23$	+ 77	19.614	. 06	- .093	23: 22	8.45:8.33	6012
1254	$4 \cdot 6$	68 Pegasi...............v	$20 \quad 23 \cdot 354$	-115	2.9892	+.0114	+.0137	+225113.26	$\cdot 23$	19.776	. 067	+.028	21	$8 \cdot 36$	6024
1255	$5 \cdot 7$	Gruis..	$21 \quad 0.932$	12	3.3770	- 0478	+.0014	$-5316 \quad 29 \cdot 23$	- 0	$19 \cdot 875$	-075	+.117	19	$8 \cdot 57$	6027
1256	6.6	Lacaille 9476	$232136 \cdot 417$	19	$+3.3467$	- .0428	+.0020	-50	$+\cdot 12$	+19.753	+ -073	- -013	16:17	9'46:9.30	6030
1257	$5^{\circ} \mathrm{O}$	8 Piscium.......... . к	$2148 \cdot 449$	-.059	$3 \cdot 0753$	+ .0001	+.0057	+o4228.14	+ 90	19.679	-066	-.090	17: 16	10'27:9*96	6031
1258	4.5	10 Piscium θ	$2253 \cdot 653$	+.086	3.0415	+ .0028	-.0088	+ $54946 \cdot 24$	$+\quad 42$	19.742	-063	- $\cdot 043$	16	9.80	6037
1259	$5 \cdot 8$	Lacai	2313.790	-.037	3.508o	- .0768	+.0044	-63 $3940 \cdot 09$	-00	19.789	-073	000	20:22	$8 \cdot 48: 8 \cdot 33$	6039
1260	$4 \cdot 7$	70 Pega	$24 \quad 5 \cdot 864$	-. 034	3.0310	+ .006I	+.0038	+12 12323.34	- 24	19.828	.061	$+.027$	19:21	$8 \cdot 84: 8 \cdot 8 \mathrm{I}$	6040
1261	$6 \cdot 0$		$232652 \cdot 244$	- 025	$+3.9765$	- 2200	+.0032	-77 $5615 \cdot 16$	+ .04	+19.833	+.075	- .005	44:45	7.89: 7.91	6052
1262	$4 \cdot 6$	Sculptoris.......... β	$2736 \cdot 708$	- .066	3.2291	-0258	+.0077	$-38 \quad 22 \quad 16 \cdot 36$	- 09	$19 \cdot 58$	- 058	+ - OL	20: 21	8.58:8.53	6054
1263	$4 \cdot 7$	Ior Aquarii............ b^{3}	$28 \quad 2.686$	+.005	3.1449	-0121	- $\cdot 0005$	-21 28 1.93	16	19.869	-055	+ 017	17	9.42	6057
$1264+$	$5 \cdot 2$	72 Pegasi........... m...	2859.473	-.038	2.9690	+ .0166	+.0040	+30 $4^{6} 24^{\circ} 09$	+ 11	19.852	-050	012	17:18	$9.53: 9.38$	6059
1265	$6 \cdot 2$	14 Pisci	$29 \quad 0.605$	-.069	3.0851	oo8	7 I	- 14759.55	+ 09	19.855	$\cdot 052$	- -009	16	$9 \cdot 67$	6060
1266	$4^{\cdot 8}$	Phæn	2329 41.943	- - 019	$+3.2399$	- 0307	$+\cdot 0023$	-43	+ .07	+r9.863	- 054	- -009	19: 20	$8 \cdot 38: 8 \cdot 32$	6062
1267	$7 \cdot 9$	Lacail	$2947 \cdot 08$		$6 \cdot 371$	$1 \cdot 750$				19.873	- 114		30:54	11.50:9.62	
1268	$6 \cdot 7$	Maye	$3022 \cdot 5$ So	+ $\cdot 006$	3.0960	-0040	-.0006	-8 $4^{4} 40$	- 19	19.900	-050	+.020	17	$9 \cdot 37$	6065
1269	$4 \cdot 9$	Lacaille	32 28.158	- $\cdot 049$	3'2447	-0339	+.0062	$-46 \quad 244 * 42$	+ 19	19.878	$\cdot 048$	-.024	26	$7 \cdot 86$	6068
1270	$4^{\circ} 2$	17 Pisciu	$3448 \cdot 607$	- 208	$3 \cdot 0841$	+ .0032	+.0248	$+5 \quad 50.03$	$+3.62$	19.487	-04I	- $\cdot 439$	22: 19	$8 \cdot 38: 8$	6077
1271	$5 \cdot 5$	Sculptoris μ	$2335 \quad 23 \cdot 333$	+.072	$+3.1558$	96		$-3^{2} \quad 3734^{\circ} \mathrm{OI}$	+ 33	+19.893	+.041	-.038	19	8. 79	6079
1272	$4 \cdot 7$	18 Pisciun............. λ	$3656 \cdot 551$	+.086	$3 \cdot 0603$	+ 0012	2	+ 11345.50	+ I $\cdot 34$	19.801	-036	- 174	16	$9 \cdot 33$	6084
$1273 \dagger$	$4 \cdot 7$	105 Aquarii........pr. ω^{2}	$373^{2} \cdot 296$	-.053	3.1136	-0077	+.0060	$\begin{array}{llll}-15 & 5 & 52 \cdot 86\end{array}$	+ 5^{2}	19.891	-036	-. 060	28: 25	8.88: $8 \cdot 68$	6087
1274	$6 \cdot 3$	Laeaille	$3842 \cdot 772$	- $\cdot 428$	$3 \cdot 4818$	-1092	+.0484	-71 2488.94	-57	20.025	-040	+ .065	20: 21	$8 \cdot 84: 8 \cdot 72$	6093
1275	$5 \cdot 4$	106 Aquarii i^{1}	$\begin{array}{ll}39 & 0.946\end{array}$	- 019	$3 \cdot 1160$	-0098	+.0020	-18 $4955^{\circ} 27$	- 0	19.963	-033	-000	16	$9 \cdot 42$	6095
1276	79	Lacail	$23410 \cdot 39$		$+4.204$	29		$\begin{array}{lllll}-84 & 25 & 5 \cdot \infty\end{array}$...	+19.978	+ $\cdot 042$		30:55	11.51:9.82	
1277	$5 \cdot 6$	19 Pisciu	$41 \quad 16 \cdot 889$	+.032	3.0634	+ .0023	-0034	+ 25555.05	+ 19	19.960	-028	-. 020	16	$9^{\circ} 33$	6102
1278	$5 \cdot 4$	Phouicis............ σ	$4157 \cdot 675$	+.019	1989	- .0387	0022	-50 4653.53	+ 10	19.973	28	-. 012	21:23	$8 \cdot 65: 8.42$	6103
1279	$4 \cdot 7$	Soulptoris...... seq. δ	$4343 \cdot 176$	--066	$3 \cdot 1322$	-0160	--00So	$\begin{array}{llll}-28 & 41 & 0.58\end{array}$	+ 83	19.895	-024	- 101	22	$8 \cdot 23$	6110
12So	7•9	Lacaille	46 то. 18		$4 \cdot 372$	- .887		-86 $27 \begin{array}{lll}-8.25\end{array}$		20.010	-030		35:59	11.54:10.07	
12SI	$5 \cdot 5$	81 Pegrasi............. ϕ	234723.989	+ -	$+3.0466$	+ 0110	11	+1833 53.85	+ 38	+19.973	'016	-. 04	21	$8 \cdot 74$	6127
1282	$6 \cdot 5$	25 P'isciu	$4757 \cdot 477$	- $\cdot 007$	3.0713	+ .0020	+.0008	+ 1 324.18	+ .06	$20^{\circ} \mathrm{O1} 3^{\circ}$	15	. 006	16	9×33	61 33
1283	$6 \cdot 5$	Lacaille	4 S 10.694	-.028	1074	- 0129	+.0032	-24 47 7% 19	+ 01	20.019	015	- 001	21:23	$8.64: 8.67$	6134
1284	5.9	Octantis.......... γ^{2}	524		4164	- $\cdot 2848$	--0184	$\begin{array}{lllll}-82 & 43 & 33 \cdot 31\end{array}$	+ 12	20.019	-009	-.016	8	$7 \cdot 42$	6146
1285	4*8	84 Pegasi.............. ψ	$5239 \cdot 688$	+.029	3.0497	+ . 0149	-.0031	+24 358.03	+ 35	20.000	. 006	--037	16	$9 \cdot 38$	6150
$1286+$	$5^{\circ} 2$	27 Piscium...........seq.	$235333^{\circ} 211$	+ 0.036	$+3.0712$	007	-.0038	$-4 \quad 639.67$	+ 64	$+19.972$	+ 004	- $\cdot 067$	16	9.49	6153
1287	5°	Phœnicis........... π	$5345 \cdot 021$	-.044	$3 \cdot 1263$	- . 0400	+.0051	$-5318 \quad 15 \cdot 27$	- $\cdot 46$	20.093	- 04	+.054	21:22	8.53:8.50	6154
1288	$4^{\prime 1}$	28 Piscinm	54 10.646	- -091	3.0787	+ .0048	+.0101	$+61833 \cdot 85$	+ 95	19.931	- 003	- 109	21: 26	9'05: $8 \cdot 76$	6156
1289	$4^{\prime 6}$	Toncanit	$5443 \cdot 395$	-.063	3.1486	- $\cdot 0693$	+.0067	$\begin{array}{llll}-66 & 8 & 0.40\end{array}$	+ 22	20.018	+ 002	-. 024	17	$9 \cdot 35$	6160
1290	$4 * 9$	Octantis............. θ	$56 \quad 27 \cdot 394$	+.164	3.1449	- .1407	-.0215	$\begin{array}{lllll}-77 & 37 & 5.02\end{array}$	+ I'19	19.888	. 001	-.156	42:45	$7 \cdot 63: 7 \cdot 62$	6165
1291	$4 \cdot 6$	30 Piscium	$235649 * 951$	- . 025	$+3.0772$	- .0018	+•0027	-634 II'71	+ 32	+20.011	. 002	-.034	16	$9{ }^{\circ} 42$	6171
1292	$4 \cdot 6$	2 Ceti	$5837 \cdot 089$	- -013	3-0762	-0079	+-013	-17 5333.62	+ .08	20.038	- 006	-.008	15: 17	9.66:9.55	6179
1293	5.8	La	$5937 \cdot 149$	-.054	$3 \cdot 0857$	-0908	+.0065	-71 $5936 \cdot 34$	+ 12	20.032	-08	-.015	23:24	$8 \cdot 24: 8 \cdot 13$	6185

[^1]
UNIVERSITY OF CALIFORNIA LIBRARY BERKELEY

Return to desk from which borrowed. This book is DUE on the last date stamped below.

[^0]: $96 \mathrm{I} .3^{\circ} \mathrm{O}, 10{ }^{\circ} 3 \quad 3^{\prime \prime} .9 \quad 105^{\circ} \quad 1897^{\circ} 4$.
 962． $4.3,100^{\circ} \quad 3^{\prime \prime \prime} \cdot 1 \quad 151^{\circ} \quad 1895{ }^{\circ} 7$.
 ovo． 3 ．4． 3 ＇6；very close biaary

[^1]: 1264. $6.0,6 \circ^{\circ}$; very close binary.

 $\begin{array}{llll}\text { 1279. } 4^{\circ}, \text {, II. } & 3^{\prime \prime} .3 & 230^{\circ} & 1899^{\circ} 7 . \\ 1286 . & 5^{\circ} 2, \text { I } & 1^{\prime \prime} .8 & 270^{\circ} \\ 1899^{\circ} .\end{array}$
